hdu 5416 CRB and Tree(异或,思路题)

CRB and Tree

Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1789    Accepted Submission(s): 573


Problem Description
CRB has a tree, whose vertices are labeled by 1, 2, …,  N . They are connected by  N  – 1 edges. Each edge has a weight.
For any two vertices  u  and  v (possibly equal),  f(u,v)  is xor(exclusive-or) sum of weights of all edges on the path from  u  to  v .
CRB’s task is for given  s , to calculate the number of unordered pairs  (u,v)  such that  f(u,v) = s . Can you help him?
 

Input
There are multiple test cases. The first line of input contains an integer  T , indicating the number of test cases. For each test case:
The first line contains an integer  N  denoting the number of vertices.
Each of the next  N  - 1 lines contains three space separated integers  a b  and  c  denoting an edge between  a  and  b , whose weight is  c .
The next line contains an integer  Q  denoting the number of queries.
Each of the next  Q  lines contains a single integer  s .
1 ≤  T  ≤ 25
1 ≤  N  ≤  105
1 ≤  Q  ≤ 10
1 ≤  a b  ≤  N
0 ≤  c s  ≤  105
It is guaranteed that given edges form a tree.

 

Output
For each query, output one line containing the answer.
 

Sample Input
  
  
1 3 1 2 1 2 3 2 3 2 3 4
 

Sample Output
  
  
1 1 0
Hint
For the first query, (2, 3) is the only pair that f(u, v) = 2. For the second query, (1, 3) is the only one. For the third query, there are no pair (u, v) such that f(u, v) = 4.
题意:给你一棵树,求树上任意两点之间路径的异或之和等于s的点对(相同两点算一对)

思路:首先我们要明确s^i^i=s 即一个数两次异或同一个数会得到原数。  所以我们假设任意一点为根节点,然后用DFS求出任意一点到根节点的异或之和(相当于遍历一遍树,O(n)即可),同时记录下每个异或之和的个数。比如有两个点到根节点的异或之和是3,那么f[3]=2;

此时我们可以知道,u点到根节点的异或之和为dp[u],v点到根节点的异或之和为dp[v],那么(u,v)之间的异或之和即是dp[u]^dp[v]

为什么?  我们假设u点到根节点与v点到根节点没有公共路径,即u点和v点在根节点的不同分支上,那么此时uv之间的路径即是u点到根节点,根节点到v,结果显然是对的

我们再假设u点到根节点与v点到根节点之间有公共路径,那么正如我刚刚写出的结论s^i^i=s 。dp[u]与dp[v]在进行异或的时候这段公共路径会相互抵消,最后的结果就是u到v路径的异或值。

注意s为0的情况,s为0的时候,值有两种可能,第一种是(i,i)这种可能,一共有n种

第二种是当路径异或和为m的点有k个时,他们两两之间异或结果必为0(相同的数异或结果为0),那么此时有(k-1)+(k-2)+...+1种可能性,即k*(k-1)/2

加起来就是最后结果。

并且对于一个已知的长度i,与i异或结果为s的数是s^i,所以我们只需要枚举i即可

代码:

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std;
#define N 200005
#define LL long long
struct Edge
{
    int u,v,w,next;
} edge[N*2];
int cnt,head[N],n;
int f[N],vis[N];
void init()
{
    cnt=0;
    memset(head,-1,sizeof(head));
    memset(vis,0,sizeof(vis));
    memset(f,0,sizeof(f));
}
void addedge(int u,int v,int w)
{
    edge[cnt].u=u;
    edge[cnt].v=v;
    edge[cnt].w=w;
    edge[cnt].next=head[u];
    head[u]=cnt++;
}
void dfs(int root,int cost)
{
    f[cost]++;
    vis[root]=1;
    for(int i=head[root]; i!=-1; i=edge[i].next)
    {
        int v=edge[i].v,w=edge[i].w;
        if(vis[v]) continue;
        dfs(v,cost^w);
    }
}
int main()
{
    int T,q,t;
    int u,v,w;
    scanf("%d",&T);
    while(T--)
    {
        init();
        scanf("%d",&n);
        for(int i=1; i<n; i++)
        {
            scanf("%d %d %d",&u,&v,&w);
            addedge(u,v,w);
            addedge(v,u,w);
        }
        dfs(1,0);
        scanf("%d",&q);
        while(q--)
        {
            LL ans=0;
            scanf("%d",&t);
            if(t==0)
            {
                for (int i=0;i<N;i++)
                    ans=ans+(LL)f[i]*(f[i]-1)/2;
                ans+=n;
            }
            else
            {
                for(int i=0; i<N; i++)
                {
                    int tt=i^t;
                    if(tt>=N) continue;
                    ans+=(LL)f[i]*f[tt];
                }
                ans/=2;
            }
            printf("%lld\n",ans);
        }
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值