a(n+2)-4a(n+1)+4a(n) = 0 现在知道a(0) = x, a(10^8) = y, 求a((10^8)/2)

Problem Description

a(n+2)-4a(n+1)+4a(n) = 0 现在知道a(0) = x, a(10^8) = y, 求a((10^8)/2)

Input

第一行是样例个数。
每一个样例第一行是x, y.

Output

每个样例输出mod 1000000007下的答案。

Sample Input

1
2 2

Sample Output

504548862

思路一:构造矩阵
0 -4
1 4
利用矩阵快速幂

 
 
思路二:
已知 a[i]=a[i-1]+1/4*a[i+1],
再把a[i-1],a[i+1]替换掉,
一次继续,便能发现规律
a[10^8/2]=2^(10^8/2-1)*x+1/2^(10^8/2+1)*y;
利用逆元和快速幂,便可以快速算出答案
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod=1e9+7;

int Pow(int a,int b){
    int res = 1;
    while(b){
        if(b & 1) res = 1ll * res * a % mod;
        a = 1ll * a * a % mod;
        b >>= 1;
    }
    return res;
}

int main(){
    int t;
    int r1=Pow(2,1e8/2-1);
    int r2=Pow(2,1e8/2+1);
    int z=mod-2;
    int r3=Pow(r2,z)%mod;
    ll x,y;
    scanf("%d",&t);
    while(t--){
        scanf("%I64d%I64d",&x,&y);
        ll ans=1ll*r1*x%mod+1ll*r3* y %mod;
        printf("%I64d\n",ans%mod);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值