二进制的神奇应用

谜题:

这是一个在坐标轴上玩的,关于“坐标集合”({a1,a2,…,am},{b1,b2,…,bl}) 的游戏。 首先,Bob分别在坐标a1,a2,…,am放上一个球。接下来Bob分别在坐标b1+0.5,b2+0.5,…,bl+0.5挖了一个洞。最后Bib会将所有球往前推(往坐标变大的方向),让球滚进第一个遇到的洞里。如果有奇数个洞有最少一个球,Bob就赢得这场游戏。
现在Bob想知道对于n个集合S1,S2,…,Sn, 他可以在多少场“坐标集合”(Si,Sj) (i<j)的游戏中胜出。

Input

一个整数t,表示样例个数(t<=10)。每组样例第一行一个整数n (2≤n≤5000).
接下来n行分别有一个整数ki,表示集合Si的大小,ki后分别有ki个不同的整数Si,1,Si,2,…,Si,ki表示集合Si (1≤ki≤50,1≤Si,j≤50).

Output

每组样例输出一个整数表示Bob可以赢的游戏场数。

Sample Input

2
2
1 1
2 1 2
2
2 1 2
2 2 1

Sample Output

1
0
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=5005;
ll state[maxn];


int red(){
    char z=getchar();
    while (z<'0' || z>'9') z=getchar();
    int ans=0;
    while (z>='0' && z<='9') {
        ans=ans*10+z-'0';
        z=getchar();
    }
    return ans;
}

int main(){
    int t;
    int n,c,a;
    scanf("%d",&t);
    while(t--){
        n=red();
        for(int i=1;i<=n;i++){
            state[i]=0;
            c=red();
            for(int j=1;j<=c;j++){
                a=red()-1;
                state[i]|=1ll<<a;       //利用二进制进行保存
            }
        }
        int cnt=0;
        for(int i=1;i<=n;i++)
            for(int j=i+1;j<=n;j++){
                ll a1=state[i],a2=state[j];
                ll t1=a1&a2;      //直接进洞
                a1^=t1;  //把直接进洞的标记为0
                a2=~a2;  //把有洞的标记为0,无洞的标记为1
                ll a3=(a1+a2)&state[j]; //模拟进位,a1中某一位为1,2中某一位为0的情况是不可能存在的
                //所以会一直进位到出现2个0(a1为0,a2为1的时候还是会进位),此时便是前面的求球都进入这个洞
                //&state[j]是把原来有洞的地方的球取出来,因为可能某个位置为1的地方原来没有洞,
                //这种情况可能是两个1再有一位进位而产生的
                a3|=t1;
                int res=0;
                while(a3){
                    a3-=a3&(-a3);
                    res^=1;
                }
                cnt+=res;
            }
        printf("%d\n",cnt);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值