题意:
ztr喜欢研究数学,一天,他在思考直角三角形方程组的Lower版,即n=x^2−y^2,,他想知道,对于给出的n,是否会有正整数解。
有T组数据,(T<=10^6),n<=10^18
思路:
n=x^2-y^2=(x+y)(x-y),假设x+y=a,x-y=b,如果a+b的和可以凑成偶数而且a<b,那么一定能因式分解,
所以如果当n为奇数时,除了1之外,一定能凑成a=n,b=1,所以一定有解
如果当n为偶数时,要使a+b为偶数,那么a要为偶数,b要为偶数,又因为a>b,所以a至少为2的倍数,b至少为2,所以n要能整除4且n大于4
#include<bits/stdc++.h>
using namespace std;
int main(){
int _;
long long n;
scanf("%d",&_);
while(_--){
scanf("%lld",&n);
if(n&1){
if(n!=1)
printf("True\n");
else
printf("False\n");
}
else{
if(n==4||n%4!=0)
printf("False\n");
else
printf("True\n");
}
}
return 0;
}