【数论】bzoj3601一个人的数论

题目链接
如果这题叫“一只蛤的神论”…

反正窝只会30分乱搞…
test1:暴力水过 test2:欧拉函数 test3:n/2*欧拉函数…

蒟蒻之前从未见过莫比乌斯反演与高斯消元如此奇妙的结合在一起…
所以来瞎bb一下…

明确目标: ans=ni=1[gcd(i,n)==1]id ,然后就开始漫长的治疗公式恐惧症的历程…

利用莫比乌斯反演最基本的运用将 gcd 展开成莫比乌斯函数。

i=1n[gcd(i,n)==1]id=i=1nidg|iμ(g)

利用和式的性质将柿子变一下性。
=g|nμ(g)i=1n[g|i]id

此处 i 的作用与之前不同,之前的i用来枚举 g 的倍数,此处gi用来枚举 g 的倍数。
=g|nμ(g)i=1ng(gi)d=g|nμ(g)gdi=1ngid

然后是窝觉得此题最令人惊叹的地方。
s(m)=mi=1id ,我们猜测这个柿子是关于 m d+1次的多项式。这货只能感性的理解一下…

然后我们就可以用高斯消元来求这个多项式的系数…
当然也可以用拉格朗日插值法,理论复杂度比高斯消元优(然而窝写不来…逃…)
就是暴力求出 1 ~d+1 s 值,然后待定系数,然后高斯消元…
然后就知道辣s(m)=d+1i=1aimi

ans=g|ngdμ(g)i=1dai(ng)i

=i=1daig|nμ(g)gdini

观察与 g 有关的柿子,μ(g) gdi 都是积性函数,所以 hi(n)=g|nμ(g)gdini 也是积性函数。

加之题目中的 n 是以质因数分解的形式给出,考虑n的某一个质因数 p 以及其对应的次幂。

hi(pa)=j=0aμ(pj)pj(di)pai

根据莫比乌斯函数的定义,在这些柿子中只有 μ(1) μ(p) 的值非 0
=μ(1)pai+μ(p)pdipai

=paipdipai=pai(1pai)

至此,问题解决完毕。
大概重新理一下解题过程。
1.用待定系数+高斯消元(拉格朗日插值法)求出某多项式的系数。
2.直接上计算式子 ans==di=1aiphi(pa)

#include <iostream>
#include <cstdio>
#define mod 1000000007
#define LL long long int
using namespace std;

int n, d, p[1005][2];
int sum[105], mat[155][155], A[155];

int power(int a,LL pos)
{
    int ans=1;
    if(pos<0)pos+=mod-1;
    for(;pos;pos>>=1, a=1ll*a*a%mod)
        if(pos&1)ans=1ll*ans*a%mod;
    return ans;
}

void init()
{
    for(int i=1;i<=d+2;++i)
    {
        sum[i]=(power(i,d)+sum[i-1])%mod;
        mat[i-1][d+2]=sum[i], mat[i-1][0]=1;
        for(int j=1;j<=d+1;++j)mat[i-1][j]=1ll*mat[i-1][j-1]*i%mod;
    }

    for(int i=0, j, k, tmp;i<=d+1;++i)
    {
        for(j=i;j<=d+1;++j)if(mat[j][i])break;
        if(i!=j)for(k=0;k<=d+2;++k)swap(mat[i][k],mat[j][k]);
        for(j=0;j<=d+1;++j)
            if(j!=i&&mat[j][i])
            {
                tmp=1ll*mat[j][i]*power(mat[i][i],mod-2)%mod;
                for(k=0;k<=d+2;++k)mat[j][k]=(mat[j][k]-1ll*tmp*mat[i][k]%mod+mod)%mod;
            }
    }

    for(int i=0;i<=d+1;++i)A[i]=1ll*mat[i][d+2]*power(mat[i][i],mod-2)%mod;
}

int main()
{
    scanf("%d%d",&d,&n);
    init();
    for(int i=1;i<=n;++i)scanf("%d%d",&p[i][0],&p[i][1]);
    int ans=0;
    for(int i=1, tmp;i<=d+1;++i)
    {
        tmp=1;
        for(int j=1;j<=n;++j)
            tmp=1ll*power(p[j][0],1ll*p[j][1]*i%(mod-1))*(1-power(p[j][0],d-i)+mod)%mod*tmp%mod;
        ans=(ans+1ll*A[i]*tmp%mod)%mod;
    }
    printf("%d\n",ans);
    return 0;
}
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值