题目链接:点击打开链接
题意:
输出n组集合,每组4个。
对于任意一组中的4个元素,一组内任意2个数的gcd==k
且n组的所有数字各不相同。
要使得n组中最大的数字最小。
问:
输出最大的那个数,并输出n组的数字。
思路:
首先能得到,当把这组数字都/k,则任意两个数互质。
然后就是规律:
1 2 3 5
7 8 9 11
对应+6
#include <cstdio>
#include <iostream>
#include <cstring>
#include <queue>
#include <algorithm>
#include <map>
#include <set>
#include <cmath>
template <class T>
inline bool rd(T &ret) {
char c; int sgn;
if(c=getchar(),c==EOF) return 0;
while(c!='-'&&(c<'0'||c>'9')) c=getchar();
sgn=(c=='-')?-1:1;
ret=(c=='-')?0:(c-'0');
while(c=getchar(),c>='0'&&c<='9') ret=ret*10+(c-'0');
ret*=sgn;
return 1;
}
template <class T>
inline void pt(T x) {
if (x <0) {
putchar('-');
x = -x;
}
if(x>9) pt(x/10);
putchar(x%10+'0');
}
using namespace std;
typedef long long ll;
#define N 200010
const ll mod = 1000000007;
ll n, k, ans;
vector<ll>G[10001];
ll gcd(ll a, ll b){
if(a>b)swap(a,b);
while(a){
b %= a; swap(a,b);
}
return b;
}
void solve(int x){
G[x].clear();
if(x==1){
G[x].push_back(1);
G[x].push_back(2);
G[x].push_back(3);
G[x].push_back(5);
}
else {
G[x].push_back(G[x-1][0]+6);
G[x].push_back(G[x-1][1]+6);
G[x].push_back(G[x-1][2]+6);
G[x].push_back(G[x-1][3]+6);
}
}
int main() {
while(cin>>n>>k){
ans = 1;
for(int i = 1; i <= n; i++)solve(i);
pt((G[n][3])*k); puts("");
for(int i = 1; i <= n; i++){
for(int j = 0; j < G[i].size(); j++){
pt(G[i][j] * k);
j==G[i].size()-1 ? putchar('\n'):putchar(' ');
}
}
}
return 0;
}