POJ 1679 The Unique MST(次小生成树模板)

至于什么是次小生成树我就不说了

主要是结论:次小生成树可由最小生成树换一条边得到。

至于怎么换这一条边呢,首先换的这条边不能是最小生成树里面的,然后呢我们就假设我们给最小生成树加进去一条另外的边,那么现在最小生成树里就会有一个环,然后我们要做的就是把这个环除新加入边的其他边里边权最大的一条边去掉就成了一颗生成树了。。我们现在要做的就是把所有没在最小生成树里面的边全都枚举一遍然后找到次小生成树就ok了。

现在说一下怎么找到环里除新加边的其他边中边权最大的边(说的好绕口,不知道读者看清楚否):

在prim算法里,每次新加一个结点。对于每一个新加的结点u,我们现在要关注的v是目前已经在最小生成树中的结点,令maxd[u][v]表示最小生成树中u到v的边中边权最大值,fa[u]表示u的父节点。那么从v到u中间肯定经过fa[u](因为u是我们刚刚加入的结点,所以与u直接相连的边只有fa[u])那么maxd[u][v]=max(w,maxd[fa[u][v]),其中c是u到v的边权。


这道题目该算是裸的次小生成树了。

#pragma warning(disable:4996)
#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;

//fa数组记录父亲结点,maxd数组记录最小生成树上两点间的所有边的最大边权
//g为0x3f3f3f3f表示不存在该边,g为-1表示该边在最小生成树中,否则为该边的边权
int fa[105], dis[105], maxd[105][105], g[105][105];
bool vis[105];
int n, m;

void init(){
	memset(fa, -1, sizeof fa);
	memset(maxd, 0, sizeof maxd);
	memset(dis, 0x3f, sizeof dis);
	memset(vis, false, sizeof vis);
	memset(g, 0x3f, sizeof g);
}

int prim(int s){
	dis[s] = 0;
	vis[s] = true;

	int nn = n, u = s, ret = 0;
	while (nn--){
		for (int i = 1; i <= n; i++){
			if (g[u][i] == -1)continue;
			int v = i, c = g[u][i];
			if (vis[v] == false && dis[v] > c){
				dis[v] = c;
				//记录父节点
				fa[v] = u;
			}
		}

		u = -1;
		for (int i = 1; i <= n; i++){
			if (vis[i] == false && (u == -1 || dis[u] > dis[i]))
				u = i;
		}
		if (u == -1)return ret;

		ret += dis[u];
		vis[u] = true;
		//把用过的边标记下
		g[fa[u]][u] = g[u][fa[u]] = -1;

		for (int i = 1; i <= n; i++){
			if (vis[i] == true && u != i){
				maxd[i][u] = maxd[u][i] = max(maxd[i][fa[u]], dis[u]);
			}
		}

	}
	return ret;
}

int second_MST(int mst){
	int ret = 0x3f3f3f3f;

	for (int i = 1; i <= n; i++){
		for (int j = i + 1; j <= n; j++){
			//因为g[0][0]永远是INF
			//既要没用过,又要存在的边
			if (g[i][j] >= 0 && g[i][j] < g[0][0]){
				ret = min(ret, mst - maxd[i][j] + g[i][j]);
			}
		}
	}
	return ret;
}

int main(){
	//freopen("in.txt", "r", stdin);
	int t; scanf("%d", &t);
	while (t--){
		scanf("%d %d", &n, &m);
		init();
		for (int i = 1; i <= m; i++){
			int u, v, c;
			scanf("%d %d %d", &u, &v, &c);
			g[u][v] = g[v][u] = c;
		}

		int mst = prim(1);
		int mst2 = second_MST(mst);
		if (mst == mst2)printf("Not Unique!\n");
		else printf("%d\n", mst);
	}
	return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Kruskal算法是一种用来求解最小生成的贪心算法。它的基本思想是,按照边的权值从小到大的顺序选择边,并且保证所选的边不会形成环,直到选取了n-1条边为止。另外,Kruskal算法还需要使用并查集来判断两个节点是否属于同一个连通分量。 在具体的实现过程中,可以按照以下步骤进行: 1. 将图中的所有边按照权值从小到大排序。 2. 创建一个并查集,并初始化每个节点为一个独立的集合。 3. 遍历排序后的边列表,对于每一条边(u, v),判断u和v是否属于同一个连通分量。如果不属于,则将这条边加入最小生成中,并将u和v合并到同一个连通分量中。 4. 重复步骤3,直到最小生成中的边数达到n-1。 通过以上步骤,就可以使用Kruskal算法求解出给定图的最小生成。 参考资料: 引用:(1)度限制最小生成和第K最短路. (poj1639) (2)最短路,最小生成,二分图,最大流问题的相关理论(主要是模型建立和求解) (poj3155, poj2112,poj1966,poj3281,poj1087,poj2289,poj3216,poj2446 (3)最优比率生成. (poj2728) (4)最小形图(poj3164) (5)次小生成. (6)无向图、有向图的最小环 。 引用:http://home.ustc.edu.cn/~zhuhcheng/ACM/segment_tree.pdf 。 引用:练习复杂一点,但也较常用的算法。 二分图匹配(匈牙利),最小路径覆盖 网络流,最小费用流。 线段. 并查集。 熟悉动态规划的各个典型:LCS、最长递增子串、三角剖分、记忆化dp 6.博弈类算法。博弈,二进制法等。 7.最大团,最大独立集。 8.判断点在多边形内。 差分约束系统. 双向广度搜索、A*算法,最小耗散优先. 第三阶段: 。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值