与非门实现异或与同或运算

一、异或门实现

1.逻辑表达式

在这里插入图片描述

2.电路结构

在这里插入图片描述

3.仿真电路

在这里插入图片描述

4.实验结果

在这里插入图片描述

二、同或门实现

1.逻辑表达式

在这里插入图片描述

2.电路结构

在这里插入图片描述

3.仿真电路

在这里插入图片描述

4.实验结果

在这里插入图片描述

### 使用异或门与非门实现全加器的逻辑路设计 #### 1. 全加器的功能描述 全加器是一种能够完成两个一位二进制以及来自低位的一个进位相加运算的组合逻辑路。其输入包括三个信号:`a`(被加)、`b`(加)和`ci`(低位来的进位),输出则有两个信号:`s`(本位和)和`co`(向高位的进位)。具体功能如下[^1]: - `s = a ⊕ b ⊕ ci` - `co = (a ⋅ b) + (b ⋅ ci) + (a ⋅ ci)` #### 2. 异或门与非门的基础特性 为了理解如何通过异或门与非门构建全加器,我们需要了解这两种基本逻辑门的操作特点。 - **异或门**:当且仅当两个输入不,则输出为高平;否则为低平。 \[ Y = A \oplus B = (\overline{A}B + A\overline{B}) \] - **与非门**:先执行操作再取反的结果即为与非门的输出。 \[ Y = \overline{(A \cdot B)} \] 这些基础特性的表达式可以通过布尔代进一步推导并转换成所需的复杂逻辑关系[^2]。 #### 3. 构建全加器的具体方法 基于以上理论分析,以下是使用异或门与非门实现全加器的一种可能方案。 ##### (1)计算本位和`s` 由于 \( s = a \oplus b \oplus ci \),我们可以分步处理这个复杂的异或操作。首先定义中间变量\( p = a \oplus b \),接着让\( s = p \oplus ci \)。这表明可以用两次连续的异或操作得到最终结果。 ```verilog // 计算p=a⊕b xor #(1.8) u_p (.a(p), .b(a_i), .c(b_i)); // 利用p和ci继续求得s=p⊕ci xor #(1.8) u_s (.c(s_o), .a(p), .b(ci_i)); ``` 此处假设延迟时间均为1.8 ps作为例子说明[^2]。 ##### (2)计算进位输出`co` 对于进位部分,原始公式为 \( co = (a⋅b)+(b⋅ci)+(a⋅ci)\) 。注意到这里存在多个AND项之后还需要OR起来的情况,而我们知道任何标准逻辑函都可以转化为只含NAND的形式表示出来。所以我们将每一个乘法项分别转写成为双重否定形式下的NAND结构,并最后把这些子结果再次经过一系列级联后的NAND形成总的CO输出路径。 下面是详细的转化过程: \[ AB=\overline{\left(\overline{AB}\right)}=\text{{NAND}}(A,B)=\overline{(A.B)} \] 理可得其他两项BC,AC也均能如此变换过来。于是乎整体表达变为下面这样一种纯粹依赖于NAND gate的方式呈现出来了: \[ CO=ABC+\dots=(\overline{\overline{((\overline{AB})+(\overline{BC}))}+(\overline{AC)}}) \] 实际硬件连接时按照上述原则逐步搭建即可满足需求。注意每一步都需要考虑合适的延时参设置以确保整个系统的稳定性和性能指标达到预期目标值范围之内[^2]。 ```verilog wire nand_ab,nand_bc,nand_ac; nand #(0.7) u_nab(.a(nand_ab), .b(a_i), .c(b_i)); // NAND of a and b nand #(0.7) u_nci_b(.a(nand_bc), .b(b_i), .c(ci_i)); // NAND of b and ci nand #(0.7) u_na_ci(.a(nand_ac), .b(a_i), .c(ci_i)); // NAND of a and ci // Combine the three terms using OR gates implemented via multiple levels of NAND. or #(0.9) u_or_co1(.d(co_temp1), .a(nand_ab), .b(nand_bc)); or #(0.9) u_or_co_final(.d(co_o), .a(co_temp1), .b(nand_ac)); ``` #### 总结 综上所述,采用异或门与非门相结合的方法确实可行用于构造完整的单比特二进制值之间的全加器单元模块。这种方法不仅有助于深入理解底层物理器件的工作机制,而且还能锻炼工程师们灵活运用各种简单元件解决问题的能力[^1][^2]。 ---
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值