7.1 人工智能的发展
-
老一代人工智能深蓝,使用穷举法战胜国际象棋大师
-
AlphaGo,围棋的可能性要远远超过国际象棋,因此挑战围棋的新一代人工智能的进化采用了这么长的时间。它没有使用穷举法,而是使用了类似决策树的算法,即机器学习。
- 机器学习区别于穷举法的地方是,它仅取出若干可能性,再去计算新的可能
7.2~7.4 强化学习算法
-
马尔可夫决策树
-
策略与估值函数
-
监督学习利用已有经验,促使机器快速学习,即有标准答案的学习
-
强化学习即使用结果来训练机器,使用估值网络来让机器学习更好的策略
7.5 AlphaGo的启示
- 人工智能潜力是无限的,阿尔法狗的案例可以运用到各个领域
- 人工智能的发挥作用是有条件的
- 我们的生存策略:
1) 用人工智能提高自己的效率
2) 数据思维
3) 专业知识依然是第一生产力