支持向量机SVM Iris数据集 分类预测

目录

支持向量机对iris数据集进行分类预测

1. 基础概念

2. 实验步骤与分析

    2.1  数据理解

    2.2  数据读入

   2.3  训练集和测试集划分

   2.4  支持向量机

   2.5  预测

   2.6  分析

   2.7 调整参数,提高预测准确率

3. 总结


支持向量机对iris数据集进行分类预测

1. 基础概念

SVM的主要思想是:建立一个超平面作为决策平面,使得正例和反例之间的隔离边缘被最大化。SVM也是结构风险最小化方法的近似实现。

2. 实验步骤与分析

序号

任务名称

任务具体要求

1

数据理解

理解数据集背景以及数据含义。

2

数据读入

可使用sklearn中自带的iris数据集:datasets.load_iris()

3

训练集和测试集划分

随机抽取总数据集70%作为训练集,测试集占30%

4

支持向量机

构建SVM模型,并进行训练

5

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值