布隆过滤器
概念
布隆过滤器本质上是一种比较巧妙的概率型数据结构(probabilistic data structure),特点是高效地插入和查询,可以用来告诉你 “某样东西一定不存在或者可能存在” 。
数据结构
布隆过滤器由一个BitMap组成。所谓的BitMap,本质上就是一个数组。与寻常数组不同的是,BitMap一个数组元素占一个bit,这一特性决定了BitMap能够极大地节省空间。
当使用布隆过滤器时,每添加一个元素都会进行以下操作:
- 对需要添加的元素进行n种hash计算。
- 将hash计算的结果对应的BitMap位进行置1操作。
而对于查询操作来说(判断某元素是否存在),将会进行以下操作:
- 对需要查询的元素进行n种hash计算。
- 查询hash计算的结果对应的BitMap位是否为1。若都为1,则代表该元素有可能存在;若存在非1位,则代表该元素一定不存在。
误判
需要注意的是,布隆过滤器无法确定元素存在,只能确定元素不存在。出现的原因是多个输入经过哈希之后在相同的bit位置1了,这样就无法判断究竟是哪个输入产生的,因此误判的根源在于相同的 bit 位被多次映射且置 1。
这种情况也造成了布隆过滤器的删除问题,即布隆过滤器不存在删除操作。因为布隆过滤器的每一个 bit 并不是独占的,很有可能多个元素共享了某一位。如果我们直接删除这一位的话,会影响其他的元素。
Java实现布隆过滤器
想要手动实现一个的话,你需要:
- 一个合适大小的位数组保存数据
- 几个不同的哈希函数
- 添加元素到位数组(布隆过滤器)的方法实现
- 判断给定元素是否存在于位数组(布隆过滤器)的方法实现。
import java.util.BitSet;
public class MyBloomFilter {
/**
* 位数组的大小
*/
private static final int DEFAULT_SIZE = 2 << 24;
/**
* 通过这个数组可以创建 6 个不同的哈希函数
*/
private static final int[] SEEDS = new int[]{3, 13, 46, 71, 91, 134};
/**
* 位数组。数组中的元素只能是 0 或者 1
*/
private BitSet bits = new BitSet(DEFAULT_SIZE);
/**
* 存放包含 hash 函数的类的数组
*/
private SimpleHash[] func = new SimpleHash[SEEDS.length];
/**
* 初始化多个包含 hash 函数的类的数组,每个类中的 hash 函数都不一样
*/
public MyBloomFilter() {
// 初始化多个不同的 Hash 函数
for (int i = 0; i < SEEDS.length; i++) {
func[i] = new SimpleHash(DEFAULT_SIZE, SEEDS[i]);
}
}
/**
* 添加元素到位数组
*/
public void add(Object value) {
for (SimpleHash f : func) {
bits.set(f.hash(value), true);
}
}
/**
* 判断指定元素是否存在于位数组
*/
public boolean contains(Object value) {
boolean ret = true;
for (SimpleHash f : func) {
ret = ret && bits.get(f.hash(value));
}
return ret;
}
/**
* 静态内部类。用于 hash 操作!
*/
public static class SimpleHash {
private int cap;
private int seed;
public SimpleHash(int cap, int seed) {
this.cap = cap;
this.seed = seed;
}
/**
* 计算 hash 值
*/
public int hash(Object value) {
int h;
return (value == null) ? 0 : Math.abs(seed * (cap - 1) & ((h = value.hashCode()) ^ (h >>> 16)));
}
}
}