目录
1.概述
KS(Kolmogorov-Smirnow)是一种非参数的统计检验方法,是针对连续分布的检验。这种检测常被用来应用于比较单样本是否符合某个已知分布(将样本数据的累计频数分布与特定理论分布相比较,如果两者间差距较小,则推断该样本取自某特定分布簇),双样本的KS检测比较两个数据集的累积分布(连续分布)的相似性。
2.优缺点
【优点】
①KS检验与卡方检验相比(都采用实际频数与理论频数之差进行检验),不需要将数据分组,可直接对原始数据的n个观测值进行检验,故KS检验对数据的利用更加完整,一般来说比卡方检验更有效,适用范围广
②KS检验具有稳健性(不依赖均值的位置)
③对数据量纲不敏感
【缺点】
①在明确待检验样本的可能分布时,检验性能不如对应的分布检验
3.KS检验过程
【定义】:检验统计量为
,其中F_{n}(x)为观察序列值,F(x)为理论序列值或另一观察序列值
【过程】:
①提出假设H0:F_{n}(x) = F(x)
②计算样本累计频率与理论分布累计概率的绝对差,令最大的绝对差为D_{n};D_{n}=max{[F_{n}(x) - F(x)]}
③用样本容量n和显著性水平a查出临界值D_{na}
④如果D_{n} < D_{na},则认为原假设成立
⑤若pvalue < α 则拒绝原假设;若pvalue ≥ α则不拒绝原假设
4.python程序
from scipy.stats import kstest
from scipy.stats import ks_2samp
import numpy as np
import matplotlib.pyplot as plt
from collections import Counter
import pandas as pd
tmp = np.random.randint(-5, 5, 10)
ks_control = np.random.randint(1, 5, 10)
ks_treatment = [1, 1, 3, 2, 2, 4, 2, 5, 2, 3]
# # =======================================α=0.05
# # 单样本ks检验
# print(kstest(tmp, "norm"))
# print(kstest(ks_treatment, "norm", N=10))
#
# # 双样本ks检验
# print(ks_2samp(ks_control, ks_treatment))
# =======================================result
# H0:两个分布式相同的
# KstestResult(statistic=0.3413447460685429, pvalue=0.152621157201553)
# pvalue > 0.05 :不拒绝原假设
# KstestResult(statistic=0.541344746068543, pvalue=0.0028511439063989563)
# pvalue < 0.05 : 拒绝原假设
# Ks_2sampResult(statistic=0.4, pvalue=0.3128526760169558)
# pvalue > 0.05 : 不拒绝原假设
# =======================================绘制频率累积折线图
def plotKS_curve(ks_control, ks_treatment):
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.figure()
d1 = list(pd.value_counts(ks_control).sort_index())
d2 = list(pd.value_counts(ks_treatment).sort_index())
y1 = []
y2 = []
for i in range(5):
y1.append(sum(d1[:i+1])/sum(d1))
y2.append(sum(d2[:i+1])/sum(d2))
plt.plot(np.arange(1, 6), y1, color="r", label="ks_control", marker="^")
plt.plot(np.arange(1, 6), y2, color="b", label="ks_treatment", marker="*")
# 给绘图添加数字
for i in range(5):
plt.text(i+1.2, y1[i], s=str(y1[i]), ha='center', va='center')
plt.text(i+1.2, y2[i], s=str(y2[i]), ha='center', va='center')
plt.xlabel("用户评分值")
plt.ylabel("频率")
plt.legend()
plt.show()
if "__main__" == __name__:
plotKS_curve(ks_control, ks_treatment)