假设检验 | 非参数假设检验 —— KS检验

本文深入解析了KS检验(Kolmogorov-Smirnov检验),一种用于比较样本数据与理论分布或两组样本数据分布相似性的非参数统计方法。文章阐述了KS检验的工作原理、优势与局限,并通过Python代码实例展示了其在实际数据中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1.概述

2.优缺点

3.KS检验过程

4.python程序


1.概述

KS(Kolmogorov-Smirnow)是一种非参数的统计检验方法,是针对连续分布的检验。这种检测常被用来应用于比较单样本是否符合某个已知分布(将样本数据的累计频数分布与特定理论分布相比较,如果两者间差距较小,则推断该样本取自某特定分布簇),双样本的KS检测比较两个数据集的累积分布(连续分布)的相似性。

2.优缺点

【优点】

①KS检验与卡方检验相比(都采用实际频数与理论频数之差进行检验),不需要将数据分组,可直接对原始数据的n个观测值进行检验,故KS检验对数据的利用更加完整,一般来说比卡方检验更有效,适用范围广

②KS检验具有稳健性(不依赖均值的位置)

③对数据量纲不敏感

【缺点】

①在明确待检验样本的可能分布时,检验性能不如对应的分布检验

3.KS检验过程

【定义】:检验统计量为,其中F_{n}(x)为观察序列值,F(x)为理论序列值或另一观察序列值

【过程】

①提出假设H0:F_{n}(x) = F(x)

②计算样本累计频率与理论分布累计概率的绝对差,令最大的绝对差为D_{n};D_{n}=max{[F_{n}(x) - F(x)]}

③用样本容量n和显著性水平a查出临界值D_{na}

④如果D_{n} < D_{na},则认为原假设成立

⑤若pvalue < α 则拒绝原假设;若pvalue ≥ α则不拒绝原假设

4.python程序

from scipy.stats import kstest
from scipy.stats import ks_2samp
import numpy as np
import matplotlib.pyplot as plt
from collections import Counter
import pandas as pd


tmp = np.random.randint(-5, 5, 10)
ks_control = np.random.randint(1, 5, 10)
ks_treatment = [1, 1, 3, 2, 2, 4, 2, 5, 2, 3]

# # =======================================α=0.05
# # 单样本ks检验
# print(kstest(tmp, "norm"))
# print(kstest(ks_treatment, "norm", N=10))
#
# # 双样本ks检验
# print(ks_2samp(ks_control, ks_treatment))

# =======================================result
# H0:两个分布式相同的
# KstestResult(statistic=0.3413447460685429, pvalue=0.152621157201553)
# pvalue > 0.05 :不拒绝原假设
# KstestResult(statistic=0.541344746068543, pvalue=0.0028511439063989563)
# pvalue < 0.05 : 拒绝原假设
# Ks_2sampResult(statistic=0.4, pvalue=0.3128526760169558)
# pvalue > 0.05 : 不拒绝原假设

# =======================================绘制频率累积折线图
def plotKS_curve(ks_control, ks_treatment):
    plt.rcParams['font.sans-serif'] = ['SimHei']

    plt.figure()
    d1 = list(pd.value_counts(ks_control).sort_index())
    d2 = list(pd.value_counts(ks_treatment).sort_index())

    y1 = []
    y2 = []
    for i in range(5):
        y1.append(sum(d1[:i+1])/sum(d1))
        y2.append(sum(d2[:i+1])/sum(d2))

    plt.plot(np.arange(1, 6), y1, color="r", label="ks_control", marker="^")
    plt.plot(np.arange(1, 6), y2, color="b", label="ks_treatment", marker="*")

    # 给绘图添加数字
    for i in range(5):
        plt.text(i+1.2, y1[i], s=str(y1[i]), ha='center', va='center')
        plt.text(i+1.2, y2[i], s=str(y2[i]), ha='center', va='center')

    plt.xlabel("用户评分值")
    plt.ylabel("频率")
    plt.legend()
    plt.show()


if "__main__" == __name__:
    plotKS_curve(ks_control, ks_treatment)

 

<think>好的,我现在需要处理用户关于Kolmogorov-Smirnov检验KS检验)的查询。用户想了解KS检验的相关信息、实现方法以及IT应用。首先,我得回忆一下KS检验的基本概念和用途,确保自己理解正确。 KS检验是一种非参数检验方法,用于比较两个概率分布是否相同,或者一个样本是否符合某个理论分布,比如正态分布。根据用户提供的引用内容,引用[1]提到KS检验是单样本的拟合优度检验,而引用[3]指出它也可以用于比较两个独立样本的分布,例如判断特征在训练集和测试集的分布是否一致。因此,我需要明确说明KS检验的两种类型:单样本和双样本检验。 接下来,用户询问实现方法。我需要分步骤说明,包括数学原理、步骤和可能的代码实现。数学方面,KS检验的核心是计算经验分布函数与理论分布函数(单样本)或两个经验分布函数(双样本)之间的最大差异,即D统计量。根据引用[1]和[3],D统计量的计算公式是关键,需要正确写出公式,并用LaTeX格式表达。例如,单样本的D值是经验分布函数Fₙ(x)与理论分布F(x)的最大绝对差,双样本则是两个经验分布函数的最大差。 然后是步骤说明,需要列出具体的步骤,比如确定假设、计算经验分布函数、计算D值、确定临界值或p值等。此外,用户可能需要代码示例,比如Python中使用scipy库的ks_2samp函数。这里要注意代码的正确性,并确保注释清晰,同时提醒用户注意样本量的问题,因为引用[2]提到Shapiro-Wilk检验在样本量超过5000时不再适用,但KS检验是否有样本量限制呢?可能需要查证,不过通常KS检验适用于大样本,但小样本时可能不够敏感。 关于应用,引用[3]提到在机器学习中用于特征分布的一致性检验,比如训练集和测试集。此外,可能的应用还包括数据预处理时的分布检验,模型评估中的漂移检测等。需要将这些应用场景具体化,帮助用户理解实际用途。 用户可能还会关心假设检验的解读,比如如何根据p值判断结果,显著性水平的选择(如0.05)。需要强调原假设是分布相同,若p值小于显著性水平则拒绝原假设。 在实现部分,我需要确保引用的函数正确,比如scipy.stats.kstest用于单样本,ks_2samp用于双样本。同时,提醒用户注意输入数据的格式,比如一维数组,以及检验的前提条件,如样本独立性等。 最后,生成相关问题时要围绕KS检验的扩展内容,比如与其他检验方法的比较(如Shapiro-Wilk)、应用中的注意事项、如何解读结果等。 现在需要检查是否有遗漏的信息,比如KS检验的优缺点。例如,KS检验对位置和形状的差异敏感,但对分布的整体形态差异可能不如其他检验。此外,对于离散分布和连续分布的处理是否有不同?根据引用[3],KS检验可以用于连续分布的比较,但如果是离散的,可能需要其他方法。这些细节是否需要包含?可能简要提及,但用户主要关注实现和应用,所以可以适当简略。 总结回答的结构:先介绍KS检验的定义和类型,然后详细说明数学原理,接着分步骤讲解实现方法,包括代码示例,之后讨论应用场景,最后注意事项。确保每个部分都引用正确的文献,比如单样本引用[1],应用场景引用[3]。</think>### Kolmogorov-Smirnov检验KS检验) #### 1. 定义与类型 KS检验是一种**非参数检验**,用于: - **单样本检验**:判断样本是否服从特定理论分布(如正态分布)[^1]。 - **双样本检验**:比较两组独立样本是否来自同一分布[^3]。 #### 2. 数学原理 - **核心统计量**:KS统计量$D$,表示经验分布函数与理论分布函数(或两个经验分布函数)的最大绝对差异。 - 单样本检验:$$D = \sup_{x} |F_n(x) - F(x)|$$ - 双样本检验:$$D = \sup_{x} |F_{n1}(x) - F_{n2}(x)|$$ 其中$F_n(x)$为经验分布函数,$F(x)$为理论分布函数。 - **拒绝域**:若$D$超过临界值或$p\text{-值} < \alpha$(通常$\alpha=0.05$),则拒绝原假设。 #### 3. 实现方法(Python示例) **单样本检验检验是否为正态分布)** ```python from scipy.stats import kstest data = [样本数据列表] # 调用kstest,指定'norm'为标准正态分布,若需其他分布需调整参数 d_statistic, p_value = kstest(data, 'norm', args=(data.mean(), data.std())) print(f"D统计量={d_statistic}, p值={p_value}") # 若p值<0.05,则拒绝原假设(即不服从正态分布) ``` **双样本检验(比较两组分布)** ```python from scipy.stats import ks_2samp sample1 = [第一组数据] sample2 = [第二组数据] d_statistic, p_value = ks_2samp(sample1, sample2) print(f"D统计量={d_statistic}, p值={p_value}") # 若p值<0.05,则拒绝原假设(即两组分布不同) ``` #### 4. 应用场景 1. **机器学习特征一致性检查**:验证训练集与测试集的特征分布是否一致,避免模型因分布偏移导致性能下降[^3]。 2. **数据质量监控**:检测数据生成过程中是否发生分布变化(如数据漂移)。 3. **统计分析**:替代参数检验(如t检验),当数据不满足正态性假设时。 #### 5. 注意事项 - **样本独立性**:KS检验要求样本独立。 - **连续分布**:理论分布需为连续分布,离散数据需特殊处理。 - **大样本敏感性**:样本量较大时,可能对微小差异敏感,需结合效应量分析。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

博士僧小星

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值