正态检验之KS检验

本文详细解释了如何使用scipy库进行KS检验,鉴别单双样本分布差异,并根据P值决定是否存在显著区别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

 

判断俩个样本是否属于同一分布:

from scipy.stats import ks_2samp
import numpy as np

# 假设这是两个数据集的数据
data_set_1 = np.random.normal(0, 1, 1000)  # 正态分布,均值0,标准差1
data_set_2 = np.random.normal(0.5, 1.5, 1000)  # 正态分布,均值0.5,标准差1.5

# 进行KS检验
statistic, p_value = ks_2samp(data_set_1, data_set_2)

# 输出结果
print(f"KS统计量: {statistic}")
print(f"P值: {p_value}")

# 判断显著性
alpha = 0.05
if p_value < alpha:
    print("两个数据集的分布有显著差异。")
else:
    print("两个数据集的分布没有显著差异。")

基本原理

KS检验的基本思想是比较两个累积分布函数(CDF),并根据这两个 CDF 之间的最大差异来评估两个样本分布是否有显著差异。

KS 检验的类型

  1. 单样本 KS 检验
    1. 通常用于比较单个样本的经验分布表与参考分布间是否具备显著差异。( 如正态分布,指数分布等 )
    2. 检验的目的:确定样本数据是否来自特点的理论分布。
  2. 双样本 KS 检验
    1. 通常用于比较两个独立样本的累积分布函数。
    2. 检验的目的:判断两个样本是否来自同一个分布。

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值