LeetCode刷题:300. 最长递增子序列(golang版)

  • 题目描述
给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。
子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

示例 1:
输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。

示例 2:
输入:nums = [0,1,0,3,2,3]
输出:4

示例 3:
输入:nums = [7,7,7,7,7,7,7]
输出:1
 

提示:
1 <= nums.length <= 2500
-104 <= nums[i] <= 104
 

进阶:
你可以设计时间复杂度为 O(n2) 的解决方案吗?
你能将算法的时间复杂度降低到 O(n log(n)) 吗?

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/longest-increasing-subsequence
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
  • 思路:
    1、状态定义: dp[i] 的值代表nums前i个数字的最长子序列长度。
    2、转移方程: 将j从0到i遍历,计算新的dp[i],遍历列表区间做以下判断:
    当 nums[i] > nums[j] 时: nums[i]可以接在nums[j]之后(此题要求严格递增),此情况下最长上升子序列长度为 dp[j] + 1
    当 nums[i] <= nums[j] 时: nums[i]无法接在 nums[j]之后,此情况上升子序列不成立,跳过。
    3、然后比较dp[j] + 1与dp[i]比较,用较大值从新赋值
  • 代码
package main

import (
	"fmt"
)
func lengthOfLIS(nums []int) int {
	var dp = make([]int,len(nums))
	dp[0] = 1
	max := 1
	//遍历nums依次取值
	for i:=1; i<len(nums); i++ {
		dp[i] = 1
		for j:=0; j<i; j++ {
			if nums[i] > nums[j] {
				if dp[j] + 1 > dp[i] {
					dp[i] = dp[j] + 1
				}
			}
		}
		if dp[i] > max {
			max = dp[i]
		}
	}
	return max
}
func main() {
	var nums = []int{10,9,2,5,3,7,101,18,30}
	res := lengthOfLIS(nums)
	fmt.Println(res)
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值