给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。
子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。
示例 1:
输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。
示例 2:
输入:nums = [0,1,0,3,2,3]
输出:4
示例 3:
输入:nums = [7,7,7,7,7,7,7]
输出:1
提示:
1 <= nums.length <= 2500
-104 <= nums[i] <= 104
进阶:
你可以设计时间复杂度为 O(n2) 的解决方案吗?
你能将算法的时间复杂度降低到 O(n log(n)) 吗?
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/longest-increasing-subsequence
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
- 思路:
1、状态定义: dp[i] 的值代表nums前i个数字的最长子序列长度。
2、转移方程: 将j从0到i遍历,计算新的dp[i],遍历列表区间做以下判断:
当 nums[i] > nums[j] 时: nums[i]可以接在nums[j]之后(此题要求严格递增),此情况下最长上升子序列长度为 dp[j] + 1
当 nums[i] <= nums[j] 时: nums[i]无法接在 nums[j]之后,此情况上升子序列不成立,跳过。
3、然后比较dp[j] + 1与dp[i]比较,用较大值从新赋值 - 代码
package main
import (
"fmt"
)
func lengthOfLIS(nums []int) int {
var dp = make([]int,len(nums))
dp[0] = 1
max := 1
for i:=1; i<len(nums); i++ {
dp[i] = 1
for j:=0; j<i; j++ {
if nums[i] > nums[j] {
if dp[j] + 1 > dp[i] {
dp[i] = dp[j] + 1
}
}
}
if dp[i] > max {
max = dp[i]
}
}
return max
}
func main() {
var nums = []int{10,9,2,5,3,7,101,18,30}
res := lengthOfLIS(nums)
fmt.Println(res)
}