题目
给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。
子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。
示例 1:
输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。
示例 2:
输入:nums = [0,1,0,3,2,3]
输出:4
示例 3:
输入:nums = [7,7,7,7,7,7,7]
输出:1
提示:
1 <= nums.length <= 2500
-104 <= nums[i] <= 104
思路
关键词: 最长、递增
基本思路: 动态规划,子问题
关键点: 数组长度为n 和 数组长度为n-1 的自增子序列的长度之间的关系;dp[n] = max(dp[0]…dp[n-1]) + 1. (nums[n] > nums[n-1])
边界值: 长度为1 ,递增子序列长度等于1
代码
/*
*
最长递增子序列
方法: 计算以i结尾的最长序列,则dp[i] 为前0 到 i-1 之内的最后一个数字小于num[i]的最大的子序列+1
*/
func lengthOfLIS(nums []int) int {
// 特殊值
i2 := len(nums)
if i2 == 0 {
return 0
}
dp := make([]int, i2)
res := 1
// 边界条件
dp[0] = 1
// 状态转移
for i := 1; i < i2; i++ {
dp[i] = 1
for j := 0; j < i; j++ {
if nums[i] > nums[j] {
dp[i] = int(math.Max(float64(dp[i]), float64(dp[j]+1)))
}
}
println(res)
res = int(math.Max(float64(res), float64(dp[i])))
}
return res
}
如何分析这类题
首先该题属于最值问题,递增条件只是循环遍历过程中状态转移的一个判断条件。
其次,长度为n的数组,求最长的递增序列,只能通过小问题解决大问题,即从长度为1开始,推出长度为2直到长度为n时的长度。
因此难点在于分析状态转移方程的写法。