统计学习导论

统计学习,又称机器学习,是计算机通过数据建立概率统计模型并进行预测和分析的科学。它结合了统计的数学方法和机器学习的工程应用,重点关注数据的表示、模型构建和学习方法。统计学习涉及监督、无监督和强化学习,其基本假设是数据独立同分布。模型、策略和算法是统计学习的三大要素。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.何为统计学习

统计学习(statistical learning)是关于计算机基于数据建构概率统计模型并运用模型对数据进行预测和分析的一门科学也称机器学习

二.统计与机器学习之间的联系

统计

1.更注重于数学方法来搭建模型
2.理论扎实
3.模型容易解释和控制

机器学习

1.注重工程方法搭建模型
2.应用场景多
3.模型预测效果好

总结

统计具有模型参数稳定以及模型结果可以被很好的解释但是机器学习更像是一个黑箱子问题,具有模型预测效果良好以及模型参数稳定的特点

统计学习概述

统计学习研究的对象是数据,提取数据特征,抽象出数据模型,发现数据中知识再回到对数据的分析预测中去。

统计学习关于数据的基本假设是同类数据具有一定的统计规律对于训练数据的要求是独立同分布的IID(Independent and Identically Distributed)。

统计学习中的数据表示

以变量或者变量组表示数据
数据分为:
1.连续变量
2.离散变量

统计学习的方法

统计学习是由监督学习(supervised learning)、无监督学习(unsupervised learning)和强化学习(reinforcement learning)

统计学习方法的三要素

  • 模型
  • 策略
  • 算法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值