第二章 分类算法(中下)支持向量机

分类算法

支持向量机(SVM)概论

支持向量机是有监督学习模型,用于二元分类问题。

在实际问题中,比如对于病人青光眼的研究,
在这里插入图片描述
以上就是青光眼三个最重要的特征,将他们抽象在XYZ轴中,如图,三维空间中,他们特征是很难单独分离开到不同的区域的。支持向量机就是解决类似的问题。

支持向量机原理

通过变换将低维转换为高维,在高维空间中去做分类(分割)。

在高维空间中的分割一定比在低维中要强,三维的分割区域一定比二维多一样。

在这里插入图片描述
问题的关键在于:维度转换+分界线确定。

分割实例在这里插入图片描述

abc三条分割线只有b可以将不同的样本完全分开。ac不能全部分开泛化能力不强。

一般来说我们选择较强能力的分割线,有较为稳定的分类结果和较强的抗燥能力。

最优的分界线在这里插入图片描述

虚线为支持向量、d是支持向量到分界线的距离,d越大越好。

支持向量机原理

在这里插入图片描述

  • 分类超平面就是两个支持向量中间的分割平面。对于分类超平面的公式,(w,b)是两个向量或者矩阵的内积。公式中w、b都是未知数,x是数据集是已知参数,通过(w,x)+b=0可以得到无数的w和b,找出可以让margin最大的w和b。
  • 判决函数:x是我们当时青光眼的三个特征,y是眼睛开角还是闭角的结果。

约束

为使所有的样本正确分类,要满足要求:
y   i [ ( w ∗ x   i ) + b ] > = 1 i = 1 , 2..... , l y~i[(w*x~i)+b]>= 1\quad i = 1,2.....,l y i[(wx i)+b]>=1i=1,2.....,l

在分类超平面上面的都是大于等于1的,线下面就是小于-1的。综合就是上面的式子。


优化

在这里插入图片描述

核函数

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述

支持向量机的应用

新闻分类

在这里插入图片描述在这里插入图片描述在这里插入图片描述
linear数据集线性可分
在这里插入图片描述

人脸识别

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

线性不可分

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值