- 博客(7)
- 资源 (2)
- 收藏
- 关注
转载 非线性最优化(三)——拟牛顿迭代法(Quasi-Newton)
From WikiQuasi-Newton methods are methods used to either find zeroes or local maxima and minima of functions. They are an alternative to Newton's method when the Jacobian (when searching for zeroe
2014-12-19 15:00:15 10311
转载 非线性最优化(二)——高斯牛顿法和Levengerg-Marquardt迭代
From WikiThe Gauss–Newton algorithm is a method used to solve non-linear least squares problems. It is a modification of Newton's method for finding a minimum of afunction. Unlike Newton's
2014-12-19 11:09:50 5104
转载 3D射影几何和射影变换
点三维空间的点X用齐次坐标表示为一个4维矢量X=(x1,x2, x3,x4)T. 当x4≠0时表示IP3中非齐次坐标为(X, Y, Z)T的点, 其中X=x1/x4, Y= x2/ x4, Z= x3/x4. 当x4=0时表示无穷远点.IP3上的射影变换是由4×4非奇异矩阵给出, 它是关于齐次4维矢量的线性变换:X’=HX. 变换矩阵H是齐次的并有15个自由度. 矩阵的
2014-12-05 15:56:33 5349 1
原创 仿射变换和仿射线性群
2D射影几何研究的是关于射影平面IP2在射影映射的变换群下保持不变的性质.射影映射是IP2到它自身的一种满足下列条件的可逆映射h: 三点x1,x2和x3共线当且仅当h(x1),h(x2),h(x3)也共线.射影映射是把IP2的点 (即齐次三维矢量) 映射到IP2的点的一种可逆映射, 它把直线映射到直线. 射影映射也称为保线变换, 或射影变换 (projective
2014-12-04 16:21:45 5390
转载 2D射影平面
平面上的一点可以用IR2中的一对坐标(x,y)来表示, 因此, 通常IR2等同于一张平面. 把IR2看作一个矢量空间时, 坐标对(x,y)是矢量, 也就是说点等同于矢量. 在不加说明时, 几何实体用列矢量表示. 按此约定, 平面上的点表示为列矢量(x,y)T. 我们记作x=(x,y)T.直线的齐次表示. 平面上的一条直线可用形如ax+by+c=0的方程表示,a, b和c的不
2014-11-26 16:44:43 1552
转载 非线性最优化(一)——牛顿迭代法
平时经常看到牛顿法怎样怎样,一直不得要领,今天下午查了一下维基百科,写写我的认识,很多地方是直观理解,并没有严谨的证明。在我看来,牛顿法至少有两个应用方向,1、求方程的根,2、最优化。牛顿法涉及到方程求导,下面的讨论均是在连续可微的前提下讨论。 1、求解方程。并不是所有的方程都有求根公式,或者求根公式很复杂,导致求解困难。利用牛顿法,可以迭代求解。原理是利用泰勒公式
2014-10-28 19:01:13 11897
转载 超定方程 最小二乘解 奇异值分解(SVD)
1. SVD任意矩阵A (mxn), 都能被奇异值分解为:其中, U是mxm的正交矩阵, V是nxn的正交矩阵, Σr是由r个沿对角线从大到小排列的奇异值组成的方阵. r就是矩阵A的秩.2. Moore-Pseudo逆任意矩阵A, 若存在矩阵X, 使得:则称X是A的Moore-Pseudo逆, 简称广义逆, 记为A+.矩阵A的广义逆是
2014-10-24 15:58:58 23173 1
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人