[打造智能对话应用:添加聊天历史功能轻松实现记忆]

引言

在许多问答应用程序中,我们希望用户能够进行往返对话,这意味着应用程序需要某种形式的"记忆",以便在当前交互中使用过去的问题和答案。在本文中,我们将探讨如何通过添加逻辑以纳入历史消息来实现这种记忆。我们将介绍两种方法:链(Chains)和代理(Agents)。

主要内容

1. 设置环境

依赖项

我们将使用OpenAI嵌入和Chroma向量存储,但本文中展示的内容适用于任何嵌入和向量存储或检索器。

%pip install --upgrade --quiet langchain langchain-community langchain-chroma bs4

环境变量

设置OPENAI_API_KEY环境变量,可以直接设置或通过.env文件加载。

import getpass
import os

if not os.environ.get("OPENAI_API_KEY"):
    os.environ["OPENAI_API_KEY"] = getpass.getpass()

2. 应用链(Chains)

在对话RAG应用中,查询应由对话上下文决定。LangChain提供create_history_aware_retriever构造函数简化此过程。

构建LLM和Retriever

from langchain_openai import ChatOpenAI
from langchain_chroma import Chroma
from langchain_core.prompts import ChatPromptTemplate, M
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值