算法基础9 —— 数论 (倍数 + 约数 + 素数(埃氏筛法) + 欧几里得与拓展欧几里得算法 + 快速幂)

数论 - 倍数

定义: 对于自然数a和b,如果存在自然数k,使得k * a = b,那么称b是a的倍数

性质:

  • 一个数有无穷多个倍数
  • 所有数都是其自身和1的倍数(任意一个整数x,一定有 1 * x = x)
  • [1,n]范围内的x的倍数一共有n/x(向下取整)个

举例说明第三条性质:
例1:n = 12,x = 2,设在区间[1,12]内2的倍数最多有k个,则2 * k <= 12,即k <= 6。[1,12]内2的倍数一共有6个,分别为2( 1 * 2 ),4( 2 * 2 ),6( 3 * 2 ),8( 4 * 2 ),10( 5 * 2 ),12( 6 * 2 )

例2:n = 12,x = 5,设在区间[1,12]内5的倍数最多有k个,则5 * k <= 12,即k <= 2.4。[1,12]内5的倍数一共有2个,分别为5,10


数论 - 约数

定义: 对于自然数a和b,如果b是a的倍数,那么a是b的约数(因数)
如,对于自然数18和3,18是3的倍数,3是18的约数

性质:

  • 所有数的约数都包含自身和1
  • 一个自然数n的约数为有限个,记为d(n)
  • 1的约数有1个 —— 1
    2的约数有2个 —— 1、2
    3的约数有2个 —— 1、3
    4的约数有3个 —— 1、2、4
    5的约数有2个 —— 1、5
    6的约数有4个 —— 1、2、3、6
    7的约数有2个 —— 1、7
    8的约数有4个 —— 1、2、4、8
    9的约数有3个 —— 1、3、9
    10的约数有4个 —— 1、2、5、10
    综上,n与d(n)的关系如下表(n <= 10)

在这里插入图片描述
算法设计以及图解:

  • 用一个数组d[N]来存储结果,d[i]表示元素i的约数的个数
  • 设置两个变量ij,初始时i = 1,变量i每次自增1。此时令j = 1,然后执行d[j]++,执行完之后令j += 1。可以得到如下结果:
    在这里插入图片描述
  • 执行完上步之后i = 2,此时令j = 2,然后执行d[j]++,执行完之后令j += 2。可以得到如下结果:
    在这里插入图片描述
  • 执行完上步之后i = 3,此时令j = 3,然后执行d[j]++,执行完之后令j += 3。可以得到如下结果:
    在这里插入图片描述
  • 执行完上步之后i = 4,此时令j = 4,然后执行d[j]++,执行完之后令j += 4。可以得到如下结果:
    在这里插入图片描述
  • 执行完上步之后i = 5,此时令j = 5,然后执行d[j]++,执行完之后令j += 5。可以得到如下结果:
    在这里插入图片描述
  • 执行完上步之后i = 6,此时令j = 6,然后执行d[j]++,执行完之后令j += 6。可以得到如下结果:
    在这里插入图片描述
  • 执行完上步之后i = 7,此时令j = 7,然后执行d[j]++,执行完之后令j += 7。可以得到如下结果:
    在这里插入图片描述
  • 执行完上步之后i = 8,此时令j = 8,然后执行d[j]++,执行完之后令j += 8。可以得到如下结果:
    在这里插入图片描述
  • 依次类推,接着执行i = 9i = 10,最终得到下表
    在这里插入图片描述

代码实现:

#include <iostream>

using namespace std;

const int N = 50;
int d[N];

//打表,时间复杂度O(nlogn)
void cal_div(int u)//计算u的约数的个数
{
    for (int i = 1;i <= u;i++)//用i'指针'来枚举1 ~ n
        for (int j = i;j <= u;j += i)//用j'指针'来计算结果
            d[j]++;
}

int main()
{
    int n;
    cin >> n;
    cal_div(n);
    for (int i = 1;i <= n;i++) cout << d[i] << endl;
    return 0;
}

数论 - 素数、合数

定义: 如果一个数的约数只有两个(1和其自身),那么称它为素数(质数)

思考?如何判断一个数x是不是素数?
通过定义得知,如果在[2,x - 1]中存在一个数i,使得x % i == 0 ,那么x不是素数(最暴力的方法)

定义 : 如果一个数有非平凡(除了1和自身以外)的约数,那么称它为合数

性质:

  • 1既不是素数也不是合数
  • 判断一个数x是否为素数,只需要枚举[2,sqrt(x)]中是否有它的约数。若没有,则为素数;若有,则不为素数

素数?素素?我跑偏了~
在这里插入图片描述

在这里插入图片描述
直男福利来喽 ~ (你们小时候喜欢玉漱呢还是喜欢素素呢?)
答应我,等会去听神话。下面言归正传

代码实现判断一个数是否为质(素)数:

#include <iostream>

using namespace std;

bool is_prime(int u)
{
    if (u == 1) return false;
    
    for (int i = 2;i * i <= u;i++)
        if (u % i == 0) 
            return false;
            
    return true;
}

int main()
{
    int n;
    cin >> n;
    if (is_prime(n)) cout  << n << " is prime" << endl;
    else cout << n << " is not prime";
    return 0;
}

素数筛法(朴素筛法以及埃氏筛法)

通过一个例题来引入素数筛法:打印质数表

输入一个自然数N,按质数定义从小到大输出1 ~ N(包含N)中所有的质数

在朴素筛法中,将2的倍数去掉时,会去掉4、68;之后,将4的倍数去掉时,又会去掉8;将3的倍数去掉时,又会去掉6… … 故朴素筛法中存在多个重复操作,可以优化,后来诞生了埃氏筛法。

埃氏筛法代码模板:时间复杂度:O(nloglogn)

#include <iostream>
using namespace std;
int prime[2010];
int main()
{
    int n;
    cin >> n;
    for (int i = 2;i <= n;i++)//从2开始判断
    {
        if (prime[i] == 0)//为0:是素数 
        {
            cout << i << " ";
            for (int j = i + i;j <= n;j += i)
                prime[j] = 1;//不为0:不是素数
        }
    }
    return 0;
}

欧几里得算法(辗转相除法)

引言:有两个整数 a,b,求 a,b 的最大公约数

欧几里得定理: gcd(a, b) = gcd(b , a % b)

//欧几里得算法模板
int gcd(int a,int b)
{
    if (b == 0) return a;
    return gcd(b,a % b);
}

扩展欧几里得算法
裴蜀定理(又叫贝祖定理):

已知整数a、b,能找到整数x、y(其中一个很可能是负数),使它们满足等式ax + by = gcd(a, b)
特别的,当ax + by = 1有解时,则a与b互质(约数只有1)

例如,gcd(2,3) = 1,当a = 2,b = 3(a、b互质)的时候,存在x = -1,y = 1,使得ax + by = gcd(2,3) = 1

127X + 97Y = 1,此不定方程有无数解,我们只要找到一对解(x0,y0),那么就可以求解出他们的通解。

总结扩展欧几里德算法应用

  • 求解不定方程48X + 36Y = 12(拓展欧几里得算法不仅会返回最大公约数,还会返回一个线性方程的一对特解)
  • 求解模线性方程(线性同余方程)
  • 求解模的逆元

求解不定方程

A * x + B * y = gcd(A,B)

例1:A = 48,B = 36,则gcd(A,B) = 12。对于方程48 * x + 36 * y = 12,判断这个方程是否有解

例2:A = 127,B = 97,则gcd(A,B) = 1。对于方程127 * x + 97 * y = 1,此不定方程有无数解,只要找到一对解(x0,y0),那么就可以求解出他们的通解

分析:

给定两个整数a和b,可以使用欧几里得算法求出他们的最大公约数gcd(a,b)。现在还希望找到一对x和y,使得ax + by = gcd(a, b)成立

首先,整数a和0的最大公约数一定是a

  • a / a = 1
  • 0 / a = 0

也就是说

当b = 0时,gcd(a,b) = gcd(a,0) = a;此时x = 1,y = 0(A * 1 + B * 0 = A)

设方程

A * x1 + B * y1 = gcd(A,B)

有方程

B * x2 + (A % B) * y2 = gcd(B,A % B)

由于

gcd(A,B) = gcd(B,A % B)

因此

A * x1 + B * y1 = B * x2 + (A % B) * y2

又因为

B * x2 + (A % B) * y2 
= B * x2 + (A - A / B * B ) * y2 
= A * y2 + B * x2 - A / B * B * y2
= A * y2 + B * (X2 - A / B * y2)

补充:为什么A % B = A - A / B * B ??

  • 以A = 127,B = 97为例
  • 127 % 97 = 30
  • 127 - 127 / 97 * 97 = 127 - 1 * 97 = 127 - 97 = 30

所以

A * x1 + B * y1 = A * y2 + B * (X2 - A / B * y2)

比较系数可以得到

x1 = y2;
y1 = X2 - A / B * y2;

这也就得到了x1和y1的值。以上思想以递归定义,函数gcd不断递归求解,一定会有个时候b = 0,此时递归结束

#include <iostream>

using namespace std;

//拓展欧几里得算法求解不定方程的解
//例如127 * x + 97 * y = 1一定有解(取x等于某个值可以解得一个唯一对应的y)
int exgcd(int a,int b,int &x,int &y)
{
    if (b == 0)
    {
        x = 1;
        y = 0;
        return a;
    }
    
    int ans = exgcd(b,a % b,x,y);
    int temp = x;
    x = y;
    y = temp - a / b * y;
    return ans;
}

int main()
{
    int a,b,x,y;
    cin >> a >> b; 
    cout << exgcd(a,b,x,y) << endl;
    cout << x << " " << y << endl;
    return 0;
}

快速幂见另一篇博客
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值