引言
Oracle AI Vector Search是一项为人工智能(AI)负载而设计的技术,允许您基于语义而不是关键词进行数据查询。这种方法特别适合处理非结构化数据,同时结合业务数据进行关系搜索,简化了数据系统之间的集成和管理。本文将介绍如何利用Oracle AI Vector Search生成文档的摘要,以及该技术的独特优势。
主要内容
Oracle AI Vector Search的优势
Oracle AI Vector Search可以在一个系统中同时进行语义和关系搜索,避免了数据在多系统间分散的困扰。其与Oracle数据库强大的特性相结合,使得向量搜索更加高效和安全。以下是一些值得关注的功能:
- 分区支持
- 实时应用集群扩展性
- Exadata智能扫描
- 跨地理分布数据库的分片处理
- 事务支持
- 并行SQL
- 灾难恢复
- 安全性
- 机器学习支持
- 图数据库
- 空间和图分析
- 区块链支持
- JSON处理
安装和连接Oracle数据库
在使用Langchain与Oracle AI Vector Search之前,您需要安装Oracle Python客户端驱动。
# 安装Oracle数据库Python客户端驱动
pip install oracledb
连接到Oracle数据库的示例代码如下:
import sys
import oracledb
# 请更新用户名、密码、主机名和服务名称
username = "<username>"
password = "<password>"
dsn = "<hostname>/<service_name>"
try:
conn = oracledb.connect(user=username, password=password, dsn=dsn)
print("Connection successful!")
except Exception as e:
print("Connection failed!")
sys.exit(1)
生成摘要
Oracle AI Vector Search通过OracleSummary提供多种文档摘要生成API,支持多个提供商,如Database、OCIGENAI和HuggingFace等。下面的代码展示如何生成文档摘要:
from langchain_community.utilities.oracleai import OracleSummary
from langchain_core.documents import Document
# 使用'database'提供商
summary_params = {
"provider": "database",
"glevel": "S",
"numParagraphs": 1,
"language": "english",
}
# 获取摘要实例
proxy = "<proxy>" # 使用API代理服务提高访问稳定性
summ = OracleSummary(conn=conn, params=summary_params, proxy=proxy)
summary = summ.get_summary(
"In the heart of the forest, "
+ "a lone fox ventured out at dusk, seeking a lost treasure. "
+ "With each step, memories flooded back, guiding its path. "
+ "As the moon rose high, illuminating the night, the fox unearthed "
+ "not gold, but a forgotten friendship, worth more than any riches."
)
print(f"Summary generated by OracleSummary: {summary}")
常见问题和解决方案
- 网络限制:由于某些地区的网络限制,可能需要使用API代理服务。请确保正确配置代理以提高访问稳定性。
- 连接失败:请检查您的数据库用户名、密码和DSN是否正确配置。
总结和进一步学习资源
Oracle AI Vector Search通过结合语义搜索与关系搜索,为用户提供了一种简化且高效的数据处理方式。为了深入学习Oracle AI Vector Search的更多功能,请参考以下资源:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—