48. 旋转图像
给定一个 n × n
的二维矩阵表示一个图像。
将图像顺时针旋转 90 度。
说明:
你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。
示例 1:
给定 matrix =
[
[1,2,3],
[4,5,6],
[7,8,9]
],原地旋转输入矩阵,使其变为:
[
[7,4,1],
[8,5,2],
[9,6,3]
]
示例 2:
给定 matrix =
[
[ 5, 1, 9,11],
[ 2, 4, 8,10],
[13, 3, 6, 7],
[15,14,12,16]
],原地旋转输入矩阵,使其变为:
[
[15,13, 2, 5],
[14, 3, 4, 1],
[12, 6, 8, 9],
[16, 7,10,11]
]
一、分析
首先我们只能在原矩阵上进行操作,而不可以借助另一个矩阵。其次这是一个特殊的二维矩阵,列数和行数是相等的,通常称之为方阵。所以我们剩下的只需要理清楚怎么旋转90°即可。
图示:
规律:
- 旋转90°即:
A[0,0]
转到A[0,n]
位置;A[0,n]
转到A[n,n]
位置;A[n,n]
转到A[n,0]
位置;A[n,0]
转到A[0,0]
位置。然后依次类推 - 上一步操作的是最外层的一层 环,我们只需要一层层往里执行相同的操作,最终即可完成整个矩阵的旋转
- 假设矩阵是
n*n
的,那么我们对n/2
个环执行旋转即可完成 - 对于任一层的环,假如起始索引为
start
,终止索引为end
,那么左上右下四个点分别可有表示为:A[start][start]
,A[start][end]
,A[end][start]
,A[end][end]
- 某层环内的循环规律即
A[start][start->end]
,A[start->end][end]
,A[end][end->start]
,A[end->start][start]
。箭头表示递变情况
二、解答
/**
* Copyright © 2018 by afei. All rights reserved.
*
* @author: afei
* @date: 2018年11月17日
*/
public class Soution {
public static void main(String[] args) {
int[][] matrix_3x3 = { { 1, 2, 3 },
{ 4, 5, 6 },
{ 7, 8, 9 } };
rotate(matrix_3x3);
printMatrix(matrix_3x3);
System.out.println("*****************************");
int[][] matrix_4x4 = { { 5, 1, 9, 11 },
{ 2, 4, 8, 10 },
{ 13, 3, 6, 7 },
{ 15, 14, 12, 16 } };
rotate(matrix_4x4);
printMatrix(matrix_4x4);
}
public static void rotate(int[][] matrix) {
int len = matrix.length;
for (int i = 0; i < len / 2; i++) {
int start = i; // 当前环的起始下标(横纵均相等)
int end = len - i - 1; // 当前环的终点下标(横纵均相等)
for (int j = 0; j < end - start; j++) {
int temp = matrix[start][start + j];
matrix[start][start + j] = matrix[end - j][start];
matrix[end - j][start] = matrix[end][end - j];
matrix[end][end - j] = matrix[start + j][end];
matrix[start + j][end] = temp;
}
}
}
public static void printMatrix(int[][] matrix) {
for (int i = 0; i < matrix.length; i++) {
for (int j = 0; j < matrix[i].length; j++) {
System.out.print(matrix[i][j] + "\t");
}
System.out.println();
}
}
}
三、项目地址
https://github.com/afei-cn/LeetCode/tree/master/48.%20Rotate%20Image