Vissim仿真导出.trj文件
菜单栏–>Evaluation–>files–>勾选Export,如图所示。然后运行仿真,得到仿真文件同名的.trj文件。
SSAM软件处理.trj文件
.trj文件无法用文本编辑器打开,需要使用SSAM软件进行编辑,如图所示,添加.trj文件,勾选“输出txt格式的trj文件”,然后“分析”,即可以在同目录下找到“同名_data.csv”文件。
SSAM软件的下载地址:https://codeload.github.com/OSADP/SSAM/zip/refs/heads/master
python可视化轨迹
首先对数据进行处理,将前14行删除,然后列名中的所有空格替换成“_”,保存文件,如下图所示。
数据文件处理好了,下面编程进行可视化,代码如下。
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import random
path = "C:/Users/11613/Desktop/test_data5.csv"
data = pd.read_csv(path)
Timestep = data["Timestep"]
Vehicle_ID = data["Vehicle_ID"]
front_pos = data[["Front_X", "Front_Y"]]
rear_pos = data[["Rear_X", "Rear_Y"]]
data_row = data.shape[0]
data_col = data.shape[1]
color = ["white", "red", "yellow", "black", "green", "blue", "plum"]
for i in range(int(Vehicle_ID[data_row-1])):
v = data[data["Vehicle_ID"] == i+1]
v_arr = np.array(v)
v_track_x = []
v_track_y = []
for m in range(v_arr.shape[0]):
v_track_x += [v_arr[m][4], v_arr[m][6]]
v_track_y += [v_arr[m][5], v_arr[m][7]]
plt.plot(v_track_x, v_track_y, color=color[random.randint(1, 6)], linewidth=0.4)
plt.xlim(-95, 85)
plt.xticks(range(-95, 85, 2))
plt.yticks(range(-4, 5, 1))
plt.gca().set_aspect(1)
plt.axhline(y=0, ls='--', c='black')
plt.axvline(x=-15, ls='--', c='black')
plt.axvline(x=21, ls='--', c='black')
plt.axhline(y=-3.75, ls='-', c='black')
plt.axhline(y=3.75, ls='-', c='black')
# plt.savefig('C:/Users/11613/Desktop/1.jpg', dpi=5000)
plt.show()
我做的是高速公路施工段上游过渡区仿真,可视化结果如下。
感谢阅读!如果对您有帮助,麻烦点个赞哦!原创不易,感谢支持!