从递归算法开始学习

)1、1、2、3、5、8.......用递归算法求第30位数的值?

  首先我们可以发现从第3位数起后一位数等于前两位数值之和,即:x=(x-1)+(x-2),x>2;

  这里需要不断的相加,第一时刻就会想到循环处理,我们尝试用数组去装载这些数值,即:

  int[] a=new int[30];

a[0]=1;

a[1]=1;

for(int i=2;i<30;i++)

{

    a[i]=a[i-1]+a[i-2];

}

求a[29]的值即为第30位数的值。

递归该如何处理呢?同样定义函数

fun(n)

{

    return fun(n-1)+fun(n-2)//n为第几位数,第n位数返回值等于第n-1位数的值与第n-2位数的值之和

}

只有当n>2为这种情况,就可以做个判断

fun(n)

{

     if(n==1 || n==2)

          return 1;

     else

          return fun(n-1)+fun(n-2);

}

求fun(30);

网站看到别人的分析也不错:

【问题】 编写计算斐波那契(Fibonacci)数列的第n项函数fib(n)。
斐波那契数列为:0、1、1、2、3、……,即:
fib(0)=0;
fib(1)=1;
fib(n)=fib(n-1)+fib(n-2) (当n>1时)。
写成递归函数有:
int fib(int n)
{ if (n==0) return 0;
if (n==1) return 1;
if (n>1) return fib(n-1)+fib(n-2);
}
递归算法的执行过程分递推和回归两个阶段。在递推阶段,把较复杂的问题(规模为n)的求解推到比原问题简单一些的问题(规模小于n)的求解。例如上例中,求解fib(n),把它推到求解fib(n-1)和fib(n-2)。也就是说,为计算fib(n),必须先计算fib(n-1)和fib(n-2),而计算fib(n-1)和fib(n-2),又必须先计算fib(n-3)和fib(n-4)。依次类推,直至计算fib(1)和fib(0),分别能立即得到结果1和0。在递推阶段,必须要有终止递归的情况。例如在函数fib中,当n为1和0的情况。
在回归阶段,当获得最简单情况的解后,逐级返回,依次得到稍复杂问题的解,例如得到fib(1)和fib(0)后,返回得到fib(2)的结果,……,在得到了fib(n-1)和fib(n-2)的结果后,返回得到fib(n)的结果。
在编写递归函数时要注意,函数中的局部变量和参数知识局限于当前调用层,当递推进入“简单问题”层时,原来层次上的参数和局部变量便被隐蔽起来。在一系列“简单问题”层,它们各有自己的参数和局部变量。
由于递归引起一系列的函数调用,并且可能会有一系列的重复计算,递归算法的执行效率相对较低。当某个递归算法能较方便地转换成递推算法时,通常按递推算法编写程序。例如上例计算斐波那契数列的第n项的函数fib(n)应采用递推算法,即从斐波那契数列的前两项出发,逐次由前两项计算出下一项,直至计算出要求的第n项。

其他递归解题:

求1+2+3+4+5+....+n的值

Fun(n)=n+Fun(n-1)

n=1时为1

Fun(n)

{

     if(n==1)

       return 1;

     else

      return n+Fun(n-1);

}

有两个整数型数组,从小到大排列,编写一个算法将其合并到一个数组中,并从小到大排列

    public void Fun()
    {
        int[] a = { 1, 3, 5, 7, 9, 10 };
        int[] b = { 2, 4, 6, 8, 11, 12, 15 };

        int[] c = new int[a.Length + b.Length];
        ArrayList al=new ArrayList();
        int i=0;
        int j=0;
        while (i <= a.Length - 1 && j <= b.Length - 1)
        {  //循环比较把小的放到前面
            if (a[i] < b[j])
            {
                al.Add(a[i++]);
            }
            else
            {
                al.Add(b[j++]);
            }
        }

        //两个数组的长度不一样,必有个数组没比较完
        while (i <= a.Length - 1)//添加a中剩下的
        {
            al.Add(a[i++]);
        }
        while (j <= b.Length - 1)//添加b中剩下的

        {
            al.Add(b[j++]);
        }

        for (int ii = 0; ii <= c.Length-1 ; ii++)
        {
            c[ii] = (int)al[ii];
        }
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值