基本算法(1)(pascal)zz

基本算法
     
     1.数论算法
     求两数的最大公约数
     function gcd(a,b:integer):integer;
     begin 
     if b=0 then gcd:=a
     else gcd:=gcd (b,a mod b);
     end ;
     
     求两数的最小公倍数
     function lcm(a,b:integer):integer;
     begin
     if a< b then swap(a,b);
     lcm:=a;
     while lcm mod b >0 do inc(lcm,a);
     end;
     
     素数的求法
     A.小范围内判断一个数是否为质数:
     function prime (n: integer): Boolean;
     var I: integer;
     begin
     for I:=2 to trunc(sqrt(n)) do
     if n mod I=0 then begin 
     prime:=false; exit;
     end;
     prime:=true;
     end;
     
     B.判断longint范围内的数是否为素数(包含求50000以内的素数表):
     procedure getprime;
     var 
     i,j:longint;
     p:array[1..50000] of boolean;
     begin
     fillchar(p,sizeof(p),true);
     p[1]:=false;
     i:=2;
     while i< 50000 do begin
         if p[i] then begin
          j:=i*2;
         while j< 50000 do begin
               p[j]:=false;
               inc(j,i); 
          end;
    end;
   inc(i);
   end;
   l:=0;
   for i:=1 to 50000 do
   if p[i] then begin
   inc(l);pr[l]:=i;
   end;
   end;{getprime}

   function prime(x:longint):integer;
   var i:integer;
   begin
   prime:=false;
   for i:=1 to l do
   if pr[i] >=x then break
     else if x mod pr[i]=0 then exit;
     prime:=true;
     end;{prime}
     
     2.
     
     3.
     
     
     4.求最小生成树
     A.Prim算法:
     procedure prim(v0:integer);
     var
     lowcost,closest:array[1..maxn] of integer;
     i,j,k,min:integer;
     begin
     for i:=1 to n do begin
     lowcost[i]:=cost[v0,i];
     closest[i]:=v0;
     end;
     for i:=1 to n-1 do begin
     {寻找离生成树最近的未加入顶点k}
     min:=maxlongint;
     for j:=1 to n do
     if (lowcost[j]< min) and (lowcost[j]< >0) then begin
     min:=lowcost[j];
     k:=j;
     end;
     lowcost[k]:=0; {将顶点k加入生成树}
     {生成树中增加一条新的边k到closest[k]}
     {修正各点的lowcost和closest值}
     for j:=1 to n do
     if cost[k,j]< lwocost[j] then begin
    lowcost[j]:=cost[k,j];
    closest[j]:=k;
    end;
    end;
    end;{prim}

B.Kruskal算法:(贪心)
按权值递增顺序删去图中的边,若不形成回路则将此边加入最小生成树。
function find(v:integer):integer; {返回顶点v所在的集合}
var i:integer;
begin
i:=1;
while (i< =n) and (not v in vset[i]) do inc(i);
if i< =n then find:=i else find:=0;
end;

procedure kruskal;
var
tot,i,j:integer;
begin
for i:=1 to n do vset[i]:=[i];{初始化定义n个集合,第I个集合包含一个元素I}
p:=n-1; q:=1; tot:=0; {p为尚待加入的边数,q为边集指针}
sort;
{对所有边按权值递增排序,存于e[I]中,e[I].v1与e[I].v2为边I所连接的两个顶点的序号,e[I].len为第I条边的长度}
while p >0 do begin
     i:=find(e[q].v1);j:=find(e[q].v2);
     if i< >j then begin
     inc(tot,e[q].len);
     vset[i]:=vset[i]+vset[j];vset[j]:=[];
     dec(p);
     end;
     inc(q);
     end;
     writeln(tot);
     end;
     
     
     5.最短路径
     A.标号法求解单源点最短路径:
     var
     a:array[1..maxn,1..maxn] of integer;
     b:array[1..maxn] of integer; {b[i]指顶点i到源点的最短路径}
     mark:array[1..maxn] of boolean;
     
     procedure bhf;
     var
     best,best_j:integer;
     begin
     fillchar(mark,sizeof(mark),false);
     mark[1]:=true; b[1]:=0;{1为源点}
     repeat
     best:=0;
     for i:=1 to n do
     If mark[i] then {对每一个已计算出最短路径的点}
     for j:=1 to n do
     if (not mark[j]) and (a[i,j] >0) then 
     if (best=0) or (b[i]+a[i,j]< best) then begin
     best:=b[i]+a[i,j]; best_j:=j;
     end;
     if best >0 then begin
     b[best_j]:=best;mark[best_j]:=true;
     end;
     until best=0;
     end;{bhf}
     
     B.Floyed算法求解所有顶点对之间的最短路径:
     procedure floyed;
     begin
     for I:=1 to n do
     for j:=1 to n do
     if a[I,j] >0 then p[I,j]:=I else p[I,j]:=0; {p[I,j]表示I到j的最短路径上j的前驱结点}
     for k:=1 to n do {枚举中间结点}
     for i:=1 to n do
     for j:=1 to n do
     if a[i,k]+a[j,k]< a[i,j] then begin
    a[i,j]:=a[i,k]+a[k,j];
    p[I,j]:=p[k,j];
    end;
    end;

C. Dijkstra 算法:
类似标号法,本质为贪心算法。
var
a:array[1..maxn,1..maxn] of integer;
b,pre:array[1..maxn] of integer; {pre[i]指最短路径上I的前驱结点}
mark:array[1..maxn] of boolean;
procedure dijkstra(v0:integer);
begin
fillchar(mark,sizeof(mark),false);
for i:=1 to n do begin
d[i]:=a[v0,i];
if d[i]< >0 then pre[i]:=v0 else pre[i]:=0;
     end;
     mark[v0]:=true;
     repeat {每循环一次加入一个离1集合最近的结点并调整其他结点的参数}
     min:=maxint; u:=0; {u记录离1集合最近的结点}
     for i:=1 to n do
     if (not mark[i]) and (d[i]< min) then begin
u:=i; min:=d[i];
end;
if u< >0 then begin
     mark[u]:=true; 
     for i:=1 to n do
     if (not mark[i]) and (a[u,i]+d[u]< d[i]) then begin
d[i]:=a[u,i]+d[u];
pre[i]:=u;
end;
end;
until u=0;
end;

D.计算图的传递闭包
Procedure Longlink;
Var
T:array[1..maxn,1..maxn] of boolean;
Begin
Fillchar(t,sizeof(t),false);
For k:=1 to n do
For I:=1 to n do
For j:=1 to n do T[I,j]:=t[I,j] or (t[I,k] and t[k,j]);
End;


6.0-1背包问题(部分背包问题可有贪心法求解:计算Pi/Wi)
数据结构:
w[i]:第i个背包的重量;
p[i]:第i个背包的价值;
(1)0-1背包: 每个背包只能使用一次或有限次(可转化为一次):
A.求最多可放入的重量。
NOIP2001 装箱问题
有一个箱子容量为v(正整数,o≤v≤20000),同时有n个物品(o≤n≤30),每个物品有一个体积 (正整数)。要求从 n 个物品中,任取若千个装入箱内,使箱子的剩余空间为最小。
l 搜索方法
procedure search(k,v:integer); {搜索第k个物品,剩余空间为v}
var i,j:integer;
begin
if v< best then best:=v;
if v-(s[n]-s[k-1]) >=best then exit; {s[n]为前n个物品的重量和}
     if k< =n then begin
if v >w[k] then search(k+1,v-w[k]);
     search(k+1,v);
     end;
     end;
     
     l DP
     F[I,j]为前i个物品中选择若干个放入使其体积正好为j的标志,为布尔型。
     实现:将最优化问题转化为判定性问题
     F[I,j]=f[i-1,j-w[i]] (w[I]< =j< =v) 边界:f[0,0]:=true.
For I:=1 to n do
For j:=w[I] to v do F[I,j]:=f[I-1,j-w[I]];
优化:当前状态只与前一阶段状态有关,可降至一维。
F[0]:=true;
For I:=1 to n do begin
F1:=f;
For j:=w[I] to v do
If f[j-w[I]] then f1[j]:=true;
F:=f1;
End;

B.求可以放入的最大价值。
F[I,j]=


C.求恰好装满的情况数。



(2)每个背包可使用任意次:
A.求最多可放入的重量。
状态转移方程为
f[I,j]=max{f[i-w[j]




B.求可以放入的最大价值。
USACO 1.2 Score Inflation
进行一次竞赛,总时间T固定,有若干种可选择的题目,每种题目可选入的数量不限,每种题目有一个ti(解答此题所需的时间)和一个si(解答此题所得的分数),现要选择若干题目,使解这些题的总时间在T以内的前提下,所得的总分最大,求最大的得分。
*易想到:
f[i,j] = max { f [i- k*w[j], j-1] + k*v[j] } (0< =k< = i div w[j])
其中f[i,j]表示容量为i时取前j种背包所能达到的最大值。
*优化:
Begin
FillChar(problem,SizeOf(problem),0);
Assign(Input,'inflate.in');
Reset(Input);
Readln(M,N);
For i:=1 To N Do
With problem[i] Do
Readln(point,time);
Close(Input);

FillChar(f,SizeOf(f),0);
For i:=1 To M Do
For j:=1 To N Do
If i-problem[j].time >=0 Then
     Begin
     t:=problem[j].point+f[i-problem[j].time];
     If t >f[i] Then f[i]:=t;
     End;
     
     Assign(Output,'inflate.out');
     Rewrite(Output);
     Writeln(f[M]);
     Close(Output);
     End.
     C.求恰好装满的情况数。
     Ahoi2001 Problem2
     求自然数n本质不同的质数和的表达式的数目。
     思路一,生成每个质数的系数的排列,在一一测试,这是通法。
     procedure try(dep:integer);
     var i,j:integer;
     begin
     cal; {此过程计算当前系数的计算结果,now为结果}
     if now >n then exit; {剪枝}
     if dep=l+1 then begin {生成所有系数}
     cal;
     if now=n then inc(tot);
     exit;
     end;
     for i:=0 to n div pr[dep] do begin
     xs[dep]:=i;
     try(dep+1);
     xs[dep]:=0;
     end;
     end;
     
     思路二,递归搜索效率较高
     procedure try(dep,rest:integer);
     var i,j,x:integer;
     begin
     if (rest< =0) or (dep=l+1) then begin
if rest=0 then inc(tot);
exit;
end;
for i:=0 to rest div pr[dep] do
try(dep+1,rest-pr[dep]*i);
end;

思路三:可使用动态规划求解
USACO1.2 money system
V个物品,背包容量为n,求放法总数。
转移方程:

Procedure update;
var j,k:integer;
begin
c:=a;
for j:=0 to n do
if a[j] >0 then
     for k:=1 to n div now do
     if j+now*k< =n then inc(c[j+now*k],a[j]);
a:=c;
end;
{main}
begin
read(now); {读入第一个物品的重量}
i:=0; {a[i]为背包容量为i时的放法总数}
while i< =n do begin
a[i]:=1; inc(i,now); end; {定义第一个物品重的整数倍的重量a值为1,作为初值}
for i:=2 to v do
begin
read(now);
update; {动态更新}
end;
writeln(a[n]);
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值