- 博客(146)
- 资源 (1)
- 收藏
- 关注
原创 YOLO-V5分类实战系列 —— 调优自己的数据集+RK1808部署
YOLO-V5分类实战系列 —— 调优自己的数据集1、保存训练和测试图片2、数据归一化3、数据增强3.1、数据增强库:albumentations3.2、数据增强库:torchvision4、ONNX CPU 推理4.1、Pt 模型转为 ONNX4.2、ONNX 推理验证4.3、 ONNX CPU推理(C++)5、RK 1808 部署5.1、查看模型输入、输出名字5.2、转换为RKNN模型5.3、C++ 芯片部署6、调优策略6.1、数据标注6.2、数据清洗6.3、网络调优
2023-07-17 22:30:39
6384
原创 Ubuntu 20.04 LTS 安装教程
1、Ubuntu 系统下载2、制作U盘安装盘3、安装Ubuntu系统4、必要软件安装4.1、调整系统时间4.2、安装搜狗中文输入法4.3、anaconda 安装
2023-06-16 12:17:29
17024
原创 YOLO-V5分类实战系列 —— 快速训练自己的数据集
YOLO-V5 训练自己的分类模型1、获取官方源码2、测试官方源码2.1、公开数据集测试源码3、源码模块解析3.1、数据读取4、快速开始训练自己的数据4.1、准备自己的数据4.2、配置训练参数
2023-06-14 14:45:39
15608
13
原创 AIGC 综述 2023:A History of Generative AI from GAN to ChatGPT
最近,ChatGPT,DALL-E-2[1,2021] 以及 Codex[2,2021]一起受到了社会的广泛关注。因此,许多人已经开始对相关的资源感兴趣,并正在寻求揭示其令人印象深刻的表现背后的背景和秘密。事实上,ChatGPT和其它生成人工智能(GAI)技术属于人工智能生成内容(AIGC)的范畴,它涉及到通过人工智能模型创建数字内容,如图像、音乐和自然语言。AIGC 的目标是使内容创建过程更高效和可访问性,允许以更快的速度生产高质量的内容。
2023-05-19 17:06:58
7651
5
原创 Rockchip RV1126 模型部署(完整部署流程)
YOLO-V5在RV1126部署全流程(环境配置,模型转换,C++模型推理,芯片运行),验证有效。
2023-03-16 21:46:07
13735
16
原创 opencv-c++ error:libopencv_imgproc.so.4.1: undefined reference to expf@GLIBC_2.27
Ubuntu18下编译的 opencv-4.1,Ubuntu16下工程引用编译好的 opencv 库,出现如下错误
2023-03-06 18:27:04
1105
原创 单目室内三维场景重建——Joint Layout, Object Pose and Mesh Reconstruction for Indoor Scenes from a Single Image
基于单张图进行3D场景理解,可以预测单张图内的目标形状(object shapes),目标姿态(object poses),场景布局(scene layout),最终重建整个室内场景的Mesh网格。
2023-03-01 09:31:36
1050
原创 YOLO-V5 系列算法和代码解析(八)—— 模型移植
文章目录:工程目标;芯片参数;查阅官方文档;基本流程;Python 版工具链安装;RKNPU2的编译以及使用方法;移植自己训练的模型;
2023-02-18 11:25:24
3729
7
原创 指标评估 —— AP & mAP 详细解读
文章目录:问题背景;相关概念;两个阈值;非极大值抑制;Precision x Recall Curve;Average Precision;实例展示;参考链接;
2023-02-06 20:41:35
8170
1
原创 YOLO-V5 系列算法和代码解析(六)—— 分布式训练
文章目录:预备知识,DP,DDP,DP和DDP对比,YOLO-V5 实际使用,参考链接;
2023-01-05 11:34:56
3247
原创 YOLO-V5 系列算法和代码解析(三)—— 训练数据加载
文章目录:调试准备,Debug 设置,代码修改,调试数据,代码运行逻辑,类初始化,启动迭代器,数据增强;
2022-12-27 17:37:58
2260
3
原创 YOLO-V5 算法和代码解析系列(二)—— 【train.py】核心内容
文章目录:调试设置,整体结构,代码解析,Model,Trainloader,分布式训练,Freeze,Optimizer,Scheduler,EMA
2022-12-27 16:22:16
1346
原创 YOLO-V5 算法和代码解析系列(一)—— 快速开始
如何快速验证官方开源YOLO-V5的有效性?文章目录:运行环境配置,Demo,重新训练 YOLO-V5s
2022-12-19 10:32:25
2310
原创 YOLO-V5 算法和代码解析系列 —— 学习路线规划综述
为什么学习 YOLO-V5 ?博客文章列表面向对象开源项目学习方法预备知识项目目录结构
2022-12-18 21:01:29
1556
原创 应用程序无法正常启动0xc000007b的解决方法
基本情况 刚装完系统,估计是电脑缺少很多相应的组件,所以在安装【CloudCompare】软件后,无法启动,会报 “应用程序无法正常启动0xc000007b的解决方法” 的错误,如下图所示,解决方案 下载软件:aio-runtimes_v2.5.0,双击打开(如下图所示),然后安装相应的组件即可。...
2022-04-29 15:29:56
2224
原创 VSCode远程配置流程(详细图解)
1安装软件2安装完成后,弹出如下红色框内的控件(用于远程连接)3 点击远程控件,进入下图,4 点击【+】,弹出下图,输入远程IP5 输入远程IP【ssh 用户名@IP地址】,回车,如下图6 选择第一项,得到如下7 打开config文件,如下图所示,到此,已经配置完成第一个远程服务器的连接。8 鼠标悬浮在该IP地址上,出现下图的红色框,点击就可以添加远程目录,打开远程工程9 由于远程LInux,所以选择Linux(第一项)10输入密码即可连接到远程服务器输入密码后,
2022-04-22 09:02:36
12415
原创 Ubuntu 下统计文件数量的命令
1. 查看当前目录下的文件数量(不包含子目录中的文件)ls -l|grep "^-"| wc -l实例展示:如下图所示,当前路径下,有2个json文件和2个文件夹,统计文件数量为2,【./train】下的文件数量为:22446【./valid】下的文件数量为:15002. 查看当前目录下的文件数量(包含子目录中的文件) 注意:R,代表子目录ls -lR|grep "^-"| wc -l实例展示:22446+1500+2 = 239483. 查看当前目录下的文件夹目录个数(不包含子
2022-03-29 09:24:44
11079
原创 VoteNet:Deep Hough Voting for 3D Object Detection in Point Clouds
基本简介论文下载地址:https://arxiv.org/pdf/1904.09664v2.pdf代码开源地址:https://github.com/facebookresearch/votenet作者以及论文信息如下: Abstract目前,3D目标检测类算法严重受2D检测类算法影响。为了利用2D检测器的网络结构,常把3D点云转化为规律的网格(比如,体素网格,或者鸟瞰图像),或者基于2D图像的3D边框预测。很少有工作直接在点云中检测3D目标。在本文工作中,我们回归第一性准则,直接基于
2022-02-23 17:58:27
1371
1
原创 动手学习深度学习——2.7 文档(Pytorch)
2.7 文档(Pytorch) 由于本书篇幅的限制,我们不可能介绍每一个单独的【PyTorch】函数和类。API文档,其他教程和示例提供了许多本书之外的文档。在本节中,我们将为您提供一些探索【PyTorch API】的指导。2.7.1 查找模块中的所有函数和类 为了知道模块中可以调用哪些函数和类,我们调用了【dir】函数。例如,我们可以查询模块中用于生成随机数的所有属性:import torchprint(dir(torch.distributions))# 输出如下['AbsTran
2022-02-09 17:10:17
401
原创 动手学习深度学习——2.6 概率论
2.6 概率论 在某种形式下,机器学习就是关于预测的。根据病人的临床病史,我们可能想要预测病人明年心脏病发作的概率。在异常检测,我们可能想要评估一下,如果飞机的喷气发动机正常工作的话,它的一系列读数可能性有多大。在强化学习中,我们希望代理人(agent)在一个环境中智能地行动。这意味着我们需要考虑在每个行动下获得高回报的可能性。当我们建立推荐系统时,我们也需要考虑概率。例如,假设我们为一家大型网上书店工作。我们可能需要估计特定用户购买特定书籍的概率。为此,我们需要使用概率的语言。整个课程、专业、论文、职
2022-02-09 16:28:42
1560
原创 动手学习深度学习——2.5 自动微分
2.5 自动微分 正如 【2.4 微积分】所说,微分是深度学习中几乎所有最优化算法的关键步骤。虽然求这些导数的计算过程很简单,只需要一些基本的微积分知识。但对于复杂的模型,手工计算参数的更新可能很痛苦(而且经常容易出错)。深度学习框架通过自动计算导数加快了这一工作,即自动微分(Automatic Differentiation)。在实践中,基于我们设计的模型,系统构建了一个计算图,跟踪哪些数据结合哪些操作进而产生输出。自动微分使系统能够反向传播梯度。在这里,反向传播只是意味着跟踪整个计算图,填充关于每个
2022-02-07 17:51:09
1599
原创 动手学习深度学习——2.4 微积分
2.4 微积分 直到至少2500年前,发现多边形的面积一直是个谜,直到古希腊人将一个多边形分割成多个三角形,并将这些三角形的面积相加,才得出多边形的面积。
2022-01-26 18:02:56
1962
Ubuntu官方推荐:制作Ubuntu系统U盘安装盘的烧录工具
2023-06-11
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人