SAP WM&IM移动类型和存储类型对应表

仓库号WM移动类型移动类型描述IM移动类型源存储类型源存储仓位目的存储类型目的存储仓位
400101有关采购订单的收货101902   
400102取消对采购单的收货102  902 
400103厂内货物收货区  901   
400104取消对生产订单的收货   901 
400201发货到成本中心 201  911 
400202取消发货到成本中心202911   
400231销售订单的发货231  912 
400232取消销售订单的发货232912   
400241根据固定资产发货241  913 
400242取消收货到固定资产242913   
400255总发货区   910WA-ZONE
400256取消一般的发货 910WA-ZONE  
400261根据订单发货261  914 
400262取消发货到订单 262914   
400281发货网络281  914 
400282取消发货网络282914   
400301库存转储工厂出库301  920TRANSFER
400302库存转储工厂入库302920TRANSFER  
400309记帐修改, 一般  922TR-ZONE922TR-ZONE
400311库存转储地点出库301  921TRANSFER
400312库存转储地点入库302921TRANSFER  
400317库存转出存货移动 JIT   921TRANSFER
400318库存转出存货放置 JIT 921TRANSFER  
400319生产补货318  100 
400321记帐修改,质量 922TR-ZONE922TR-ZONE
400331根据抽样发货331  917QUALITY
400332取消发货到抽样检查332917QUALITY  
400350补货看板     
400451从客户退回 451904   
400452取消退货 452  904 
400453记帐修改,退货  922U-ZONE922U-ZONE
400501没有采购订单的收货501902WE-ZONE  
400502取消无采购单的收货502  902WE-ZONE
400521厂内货物收货区 521901WE-ZONE  
400522取消来自生产的收货522  901WE-ZONE
400551报废551  999SCRAPPING
400552取消报废552999SCRAPPING  
400561库存余额的初始条目561998INIT.ENTRY  
400562删除库存数据表目562  998INIT.ENTRY
400601根据交货通知发货601  916 
400602注销GI交货602916   
400603交货,固定仓位发货区603905SHIPPING916 
400651通过交货凭证退回 651904   
400711差额 (负值)701  999 
400712差额 (正值)702999   
400801经仓库管理厂内货物收货区 901   
400802按仓库管理取消收货   901 
400811差额 (负值)   980DUMMY
400812差额 (正值) 980DUMMY  
400813传送正的接收数据    980DUMMY
400814传送负的接收数据  980DUMMY  
400850移动两步领货     
400901GI to delivery  auto conf   916 
400903GR prod. order MTO 901 905SHIPPING
400911差额 (负值)711999ADJUST999ADJUST
400912差额 (正值)712999ADJUST999ADJUST
400919Replen. for fixed bin   005 
400991库存转储地点出库Z91  991TRANSFER
400992库存转储地点入库Z92991TRANSFER  
400993库存转储地点出库Z93  992TRANSFER
400994库存转储地点入库Z94992TRANSFER  
400995库存转储地点出库Z95  993TRANSFER
400996库存转储地点出库Z96993TRANSFER  
400999仓库监控     
### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

李威威wiwi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值