AI-机器学习(12)-神经网络-反向传播

 

      反向传播神经网络如雷贯耳。哪哪都是这个词。为什么要反向?

     首先神经网络是为了最优化参数,wb. 梯度下降最优解。如何做?求导。当把所有式子列出来后,会发现式链式求导,有大量重复。从数学计算的简便性来说,反过来可以避免重复,简化计算这就是为嘛反向

1.公式

2.公式->代码 (主要是求导函数的运用)

3.技巧(矩阵求导,可以转置让其维度匹配)

  

  1. 公式

         W1 b1

 

      W2 b2

  1.  

         W3 b3

  1. 公式->代码
  1. 反向传播求梯度,主要就是求导得gradients[ + ]的应用

完成的代码如下

2.更新系数

  1. 训练

主程序,或者叫入口程序。

两个函数:

显示

3.技巧

  矩阵如何求导?标量对矩阵求导,维度不变。

  公式:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值