AI基础算法
AI基础算法
多云的夏天
读小说一样读代码
展开
-
AI-算法(1)-迁移学习
1.迁移学习的概念2.迁移学习的分类3.模型融合(超级经典的图)1.迁移学习与前两年比,机器学习已经升级为迁移学习。机器学习假定的式训练集->测试集数据分布式一致的,或者叫数据特征一致,而迁移学习应用的是两者不一致的情况下。所谓迁移学习有两个重要的概念:域(数据)-任务(要完成的事情).在机器学习里 :原域(训练集)->目标域(测试集)。2.迁移学习的分类 目标任务 源域 目标域 归纳式 不同相关 无所谓是否相同 无所谓是否相同 ..原创 2021-04-29 12:22:52 · 359 阅读 · 0 评论 -
AI-DNN-RNN-CNN区别
DNN-feedforward neural network 前馈神经网络RNN-Recurrent Neural Network 循环神经网络CNN-Convolutional Neural Networks 卷积神经网络DNN以向量形式输入CNN 比较好,图像领域和自然语言处理领域RNN 处理时序相关的序列问题...原创 2021-03-10 22:11:14 · 227 阅读 · 0 评论 -
AI-如何读论文
一.论文下载网站1.代码复现的论文:https://www.paperswithcode.com/2.一个能绕过科研论文收费的神奇网站:https://sci-hub.twttps://sci-hub.si https://sci-hub.se3.百度学术: http://xueshu.baidu.com二.论文整理工具 Mendeley 三.学习路径一般论文结构...原创 2020-12-07 18:24:13 · 665 阅读 · 0 评论 -
Python(25)-dict排序
dictd = {'a':7, 'b':3, 'e':12, 'c':8}#按照key大小排序d1 = [(k, d[k]) for k in sorted(d.keys())]#按照value大小排序d2 = sorted(d.items(), key = lambda x:x[1])原创 2021-03-29 10:12:54 · 141 阅读 · 0 评论 -
AI-西瓜书(3)-SKLearn(1)
1.skLearn用途2.SKlearn 模块内容划分3.如何使用SkLearn4. SkLearn 常用算法1.skLearn用途2.SKlearn 模块内容划分Classification 分类Regression 回归Clustering 无监督学习Dimensionality reduction 降维Model Selectionn...原创 2019-12-08 15:38:42 · 164 阅读 · 0 评论 -
AI-数据分析-数据挖掘-科学计算
什么是数据分析,什么是数据挖掘,什么是机器学习。貌似都是对历史数据的应用。 下面是对方法论的一些描述。 1.数据分析 2.数据挖掘 3.科学计算 4.数据预处理和数据分析 1.数据分析 对过去的还原 统计与回归 描述统计分析方法 :用图表示历史 频数分析 集中趋势 离散程度 ...原创 2019-12-04 18:51:37 · 980 阅读 · 0 评论 -
AI-机器学习-目录
AI-机器学习(1)-SVM(1)-间隔最优化AI-机器学习(2)-SVM(2)-对偶AI-机器学习(3)-SVM(3)-核函数AI-机器学习 (4)一图看懂什么是AI,机器学习和深度学习AI-机器学习 (5)-趣谈贝叶斯-条件概率-一看就懂AI-机器学习(7)-CRF-一看就懂AI-机器学习(9)-PCA-LDA-线性回归必备-详细实现步骤AI-机器学习(10)-SVM(4)-软硬...原创 2019-12-02 18:52:54 · 188 阅读 · 0 评论 -
AI-统计学习-目录
AI-统计学习(1)-模型-感知机-(随机梯度下降和对偶)AI-统计学习(2)-模型-K近邻AI-统计学习(3)-分类-感知机-python 实例代码AI-统计学习(4)-KNN 线性扫描算法-python-实例代码AI-统计学习(5)-极大似然估计求后验概率最大化AI-统计学习(6)-贝叶斯求后验概率最大化AI-统计学习(7)-决策树模型-“概念表格”到”树”再到”数学表达式”-全过程详解AI-...原创 2019-12-02 18:52:34 · 190 阅读 · 0 评论 -
AI-统计学习(18)-隐马尔可夫和条件随机场
隐马尔可夫和条件随机场应用于语音识别、自然语言处理等应用。简单的说我们就是用图,有向图、无向图来表示离散的变量和其概率分布。解决的是标注问题,关注的是变量之间的“依赖性”“独立性”。1.团、最大团2.有向图 无向图3.马尔可夫性4.隐马尔可夫模型 2个假设,3个基本问题,3组参数5.条件随机场 图形 公式6.贝尔曼优化原理团、最大团团:任意两个间都有...原创 2019-11-29 20:29:23 · 756 阅读 · 0 评论 -
AI-统计学习(17)-EM算法
EM算法是什么的?真实应用中,很多情况都是不完全数据,或者缺失数据,但我们还是想知道它的概率分布。正常情况下,我们用最大似然估计或者贝叶斯进行概率预测,实现监督学习,而这算法就是针对非监督的概率分布预测的。初始值不同时会存在局部最优的情况。1.用于什么场景?不完全数据,缺失数据的情况下。2.E是什么?期望,隐变量的期望。3.M是什么?MAX最大化。4.流程是什么?收敛...原创 2019-11-24 19:35:16 · 302 阅读 · 0 评论 -
AI-西瓜书(1)-一元线性回归公式推导(1)-偏置b
对于实际应用来说,一元线性回归是常用的,实测值、预测值、损失值。为了调参、为了最小化损失,知其然也知其所以然,不能怕麻烦,手推公式。最重要的是理解了背后的数学原理,可以做恒等变形和等价变换,实际应用时,可以使得原来不可解的变为可解的。原问题:1.我有实测值表达如下:后面为向量形式2.yi表示预测值3.我希望两个相等,或者叫损失值最小,公式表达如下:步骤:...原创 2019-11-21 18:25:43 · 641 阅读 · 0 评论 -
AI-统计学习(16)-图解 L1L2正则-凸优化
L1 L2正则-凸优化问题解决什么问题:解决过拟合什么叫过拟合? 模型复杂,数据量小。 表现: 训练集好 测试集不好。 怎么办:减少参数。如何减少呢?数学上叫正则化 写损失函数的时候 min(损失函数+正则化项) 模型参数会压缩或者减小到0。结论:q<=1 可得稀疏解 ...原创 2019-11-20 18:52:28 · 1315 阅读 · 0 评论 -
AI-统计学习(15)-Adaboost(2)-训练误差界
Adaboost由于其分类效果好,算法简单,还有其可靠的理论基础,深受大家欢迎。本文以统计学习三要素来说说这个模型,并对训练误差界进行说明。希望对大家理解这些公式有帮助。Adaboost 模型说明2.训练误差界1.Adaboost 模型说明模型:加法模型 (求和)(求和项系数+积函数)策略:损失函数为指数函数(预测值正确也是有损失的)算法:...原创 2019-11-19 19:15:15 · 459 阅读 · 0 评论 -
AI-统计学习(14)-Adaboost(1)-基本模型
Adaboost由于其分类效果好,算法简单,还有其可靠的理论基础,深受大家欢迎。1.用来解决什么问题:二分类模型。2.如何解决:弱学习器的叠加生成强学习器3.判断标准:分类误差率4.调整的是什么?基本分类器的权重5.步骤:N6.总结:并行 其实这些模型难于理解在于看到公式表达就头晕,所以针对每个字符的意义,我做了详细的说明,这样一看就明白了。提升方式基...原创 2019-11-19 19:12:15 · 214 阅读 · 0 评论 -
python-(3)-函数和矩阵的求导
求导是最优化中最常用的算法。 函数求导公式表达 三种方法 1.scipy.misc模块下的derivative 2.使用sympy模块里的diff和symbols函数 3.使用numpy模块里的函数 公式: X=2时,1...原创 2021-03-29 10:16:38 · 4310 阅读 · 3 评论 -
AI-机器学习(13)-神经网络-RNN
什么时候用?文本、音频分析。 永标准的神经网络用来解决这些问题时的缺点? 1.标准的神经网络,输入样本长度固定的。这个可以处理序列信号长度不同的情况。比如输入文本,第一次输入20个词,第二次输入30个词。RNN用输出序列解决这个问题。2.标准神经网络无法共享特征。比如一句话里有两个相同的词,“李雷”,第一个定义为人名,第二个也肯定是人名的,这个网络可以记忆第...原创 2019-11-17 17:22:07 · 183 阅读 · 0 评论 -
AI-机器学习(11)-神经网络-前向传播
神经网络说起来很神秘,在输入项少,隐藏层少的情况下还是不难的。本文手动构建了一,2项输入、2隐藏层,1输出的前向神经网络。 基本的模式就是 过程->符号->公式->代码。 程序过程就是录入数据项训练->结果。 关注点就是公式->代码。 1.我们构建的过程图 2.符号说明 ...原创 2019-11-17 16:11:25 · 218 阅读 · 0 评论 -
AI-机器学习(12)-神经网络-反向传播
反向传播神经网络如雷贯耳。哪哪都是这个词。为什么要反向? 首先神经网络是为了最优化参数,wb. 梯度下降最优解。如何做?求导。当把所有式子列出来后,会发现式链式求导,有大量重复。从数学计算的简便性来说,反过来可以避免重复,简化计算,这就是为嘛反向。1.公式2.公式->代码 (主要是求导函数的运用)3.技巧(矩阵求导,可以转置让其维度匹配) ...原创 2019-11-17 16:05:33 · 158 阅读 · 0 评论 -
python-(1)-概述-python能做什么
Python 这么火,那它究竟能做什么?当然我只写了一个子集。1.数据分析,可视化2.NLP自然语言处理3.社交网络关系《权力的游戏》人物关系分析4.计算机视觉5.量化交易平台数据分析,可视化 1数量统计 2变量之间的关系3热图,不同属性的关系 2.NLP自然语言处理 分词,语义。 3.社交网络关系《权力的游戏》人物关系分析...原创 2019-11-23 05:05:47 · 99 阅读 · 0 评论 -
AI-机器学习(10)-SVM(4)-软硬间隔-模型择优唯一标准
感知机和SVM都是线性可分,那他们有什么区别呢?还有什么是支持向量机,硬间隔和软间隔又是什么?。 1.感知机与SVM的异同 2.硬间隔最大化 3.软间隔最大化1.感知机与SVM的异同 感知机和SVM都是用于处理二分类问题。用超平面区分两类不同的数据。 数据分:线性可分:就用超平面分开。 线性不可...原创 2019-11-16 07:27:46 · 314 阅读 · 0 评论 -
AI-统计学习(11)-改进的迭代算法及拟牛顿法
逻辑回归时是需要改进迭代尺度算法,用于提高收敛性,而对于没有显示形式方程求极值或者0时,我们需要用拟牛顿法。1.改进的尺度迭代算法 1.1公式及解释 1.2求解步骤及难点说明 1.2.1.第一次缩放 1.2.2第二次缩放 1.3收敛条件 1.4总结2.拟牛顿法步骤 2.1公式及解释 2.2图形及步骤说明...原创 2019-11-14 18:56:54 · 990 阅读 · 0 评论 -
AI-统计学习(10)-拉格朗日对偶性-求极值必备
我们经常要做的就是求解极值,最大或者最小。为了数学方便,引入的是拉格朗日乘子和对偶性。在求解极值的其实就是关注d*(最优值) C(约束) p*(最优概率)。如果不想看推导,可直接看总结的红字即可。 1.拉格朗日对偶性及其推导 2.定理 2.1定理1 d* C p*关系 2.2定理2 d*= p* 等号成立的条件(凸集...原创 2019-11-12 20:10:00 · 787 阅读 · 0 评论 -
AI-统计学习(9)-贝叶斯求概率最大化python-实例源码
贝叶斯常用来解决二分类问题比如我有如下一组数据,建了一个模型,现在我想计算一下 新值x(2,s), 它输出-1和1的概率分别是多少呢。步骤:1.公式计算 2.预测公式计算 1.1 1.2 2.预测 3三个公式,对...原创 2019-11-10 16:11:47 · 241 阅读 · 0 评论 -
AI-统计学习(8)-决策树模型-python-实例源码
决策树是种可视化的模型,可做分类也可做回归。概念内容详看前章,本文讲如何python 实现。回顾一下比如我知道一组人的信息:年龄、是否有工作、是否有房贷…这叫特征值,现在再来一些人,这时我想能否贷款给他。我该怎么做呢,就可以用决策树模型实现。左边是数据,右边是树。当然这棵树没有把全部的特征向量放进去只是示意了一下。 图1程序过程: 1...原创 2019-11-10 15:33:09 · 235 阅读 · 0 评论 -
AI-统计学习(7)-决策树模型-“概念表格”到”树”再到”数学表达式”-全过程详解
决策树是种可视化的模型,可做分类也可做回归。比如我知道一组人的信息:年龄、是否有工作、是否有房贷…这叫特征值,现在再来一些人,这时我想能否贷款给他。我该怎么做呢,就可以用决策树模型实现。左边是数据,右边是树。当然这棵树没有把全部的特征向量放进去只是示意了一下。 图1 2那如何建树。其实就是如何选择根结点、内部结点、叶节点、判别生成子结点。 换句话说就是如何选择特...原创 2019-11-10 11:06:58 · 283 阅读 · 0 评论 -
AI-统计学习(6)-贝叶斯求后验概率最大化
贝叶斯求后验证概率最大化 与极大似然估计相比多了一个 1.二项先验分布(beta分布) 2.Dirichlet先验分布 3.概率密度分布图像 4.方程表达: 4.1初始 4.2结果1.二项先验分布(beta分布)2.Dirichlet先验分布3.概率密度分布图像4.方...原创 2019-11-09 20:44:26 · 274 阅读 · 0 评论 -
AI-统计学习(5)-极大似然估计求后验概率最大化
手推了一把用极大似然估计算后验概率最大化记录一下。 1.二项分布、多项分布和联合概率分布数学表达形式 2.求解步骤 2.1带约束的极值问题,引入拉格朗日乘子 2.2求极值,其实就是求偏导 2.3后验证概率最大化二项分布和多项分布 什么是二项分布 抛硬币就是二项分布,正面或...原创 2019-11-09 20:40:47 · 269 阅读 · 0 评论 -
AI-机器学习(9)-PCA-LDA-线性回归必备-详细实现步骤
PCA LDA用来干什么:数据降维,从高维到低维。提取特征分量或者叫主成分分析。属于线性回归和拟合必备。实例:比如淘宝,下单数和成交数分析。1.PCA 最大化方差如何推出主成分? 实现步骤:1.1给定数据 1.2中心化 1.3投影坐标 1.4方差表示 ...原创 2019-11-09 15:33:52 · 755 阅读 · 0 评论 -
AI-机器学习(7)-CRF-一看就懂
1.CRF定义: Conditional Random Fields-条件随机场是一种判别模型,可以用于预测序列数据,通过使用过去的上下文信息,使模型达到更好的预测效果。2.CRF应用: CRF 可以对序列数据建模,NLP 领域有很多应用。例如 :Parts-of-Speech tagging,这个任务依赖之前的单词,通过使用 feature functions...原创 2019-11-09 09:28:26 · 839 阅读 · 0 评论 -
AI-机器学习(3)-SVM(3)-核函数
1.解决的问题: 非线性可分时怎么办。 2.方法:低维映射到高维。 3.如何从低维到高维 核函数:向量间的点乘,都会用到核函数点乘出现是因为对偶。 4.一些常用的核函数: 4.1.线性核函数 对数据不清楚时直接线性拟合 ...原创 2019-11-06 20:43:45 · 162 阅读 · 0 评论 -
AI-机器学习(2)-SVM(2)-对偶
对偶,我们要解决什么问题呢?约束条件下目标函数如何求最优化。比如两条线的拟合,比如分类。 这跟对偶啥关系呢? 对偶就是 min(max..)==max(min..) 这是强对偶,min(max..)>= max(min..)这是弱对偶。 最优不就是max 或者min,有时求min方便,有时求max方便,于是用数学方便做了转换。 ...原创 2019-11-05 12:05:12 · 293 阅读 · 0 评论 -
AI-机器学习(1)-SVM(1)-间隔最优化
SVM是解决什么问题的:分类 如何解决呢:SVM有三宝,间隔最优化、对偶、核技巧。本文讲讲间隔。 1.线性可分 2.超平面 3.最大间隔超平面 4.支持向量 5.svm间隔最优化问题 6.间隔最优化如何计算1.什么是线性可分? 二维里,两类点被一条直线完全分开。2.什么是超平面? ...原创 2019-11-04 06:48:39 · 254 阅读 · 0 评论 -
AI-统计学习(4)-KNN 线性扫描算法-python-实例代码
KNN 线性扫描算法可做线性回归也可做分类。概念详见前篇 示例: 输入数据:训练数据T={(X1,Y1)……(XN,YN)} 待输入数据:(x_test) K值 左图为输入,右图为图形界面 K 为1-6时结果1.算法步骤2.编码步骤3.问题 每次处理一个...原创 2019-11-03 16:02:58 · 244 阅读 · 0 评论 -
AI-统计学习(3)-分类-感知机-python 实例代码
感知机模型一般用来做二分类,找分类超平面的。概念请参看前篇。本篇是python的具体实现。 示例输入: X_train=np.array([[3,3],[4,3],[1,1]]) y_train=np.array([1,1,-1])//标签 求超平面 示例输出: 左边是b...原创 2019-11-03 15:54:13 · 239 阅读 · 0 评论 -
AI-统计学习(2)-模型-K近邻
K近邻算法K近邻模型解决的问题:二分类、多分类、回归。 K近邻模型适用条件:非线性可分,局部信息,用完后需要训练集数据 存储方法影响结果。没有很强的假设。 K近邻算法的模型复杂度体现在哪?什么情况下会造成过拟合? 模型复杂度体现在K值上 K值比较小的时候容易造成过拟合 K值比较大的时候容易造成欠拟合。 1.什么是K近邻,三要素 距离度量、K值选择、分类决策规则...原创 2019-11-02 20:43:50 · 312 阅读 · 0 评论 -
AI-统计学习(1)-模型-感知机-(随机梯度下降和对偶)
感知机模型:感知机模型解决的问题:二分类问题 感知机模型适用条件:线性可分 感知机模型统计学习三要素:假设空间、策略、求解算法 感知机的假设空间是什么?模型复杂度体现在哪?假设空间就是分离超平面 wx+b=0.模型的复杂度主要体现在x(...)的特征数量,也就是维度d上。1感知机模型(定义)2.感知机策略(衡量模型好坏)3.感知机算法 (两种,后一种计算量小 原因1.先算内...原创 2019-11-02 12:37:16 · 272 阅读 · 0 评论 -
AI(2)-科班学习路径
本文图片是南大本科培养体系提纲,科班学习路径。原创 2019-10-09 17:28:56 · 113 阅读 · 0 评论 -
AI(4)一图看懂什么是AI,机器学习和深度学习
什么是AI、机器学习、深度学习,它们是什么关系?华为AI专家认证给出的概念,我觉得是靠谱的,可以去官网上下https://ilearningx.huawei.com/portal/#/courses/course-v1:HuaweiX+EBGTC00000187+2018.9/about2.机器学习与数据挖掘的联系与区别 机器学习(Machine Learning,ML)...原创 2019-12-02 09:51:25 · 495 阅读 · 0 评论 -
AI(1)-常用名词1
1.随机变量:随机试验各种结果的实值单值函数。例如: 抛硬币正面H, 反面T 样本空间: S={HH,HT,.TH,TT}以Y记两次投掷硬币得到反面T的总数,则Y是随机变量。随机变量的分布函数(离散、连续)、分布率(连续)、密度函数(离散)有什么联系和区别?2. 特征分解:是将矩阵分解为由其特征值和特征向量表示的矩阵之积的方法。 求解方法三种: 2.1矩阵分解...原创 2019-09-05 10:29:55 · 212 阅读 · 0 评论 -
AI(5)-趣谈贝叶斯-条件概率-一看就懂
贝叶斯的方法 贝叶斯方法的本质就是从结果推测出成因。 比如你怀疑老王是杀人凶手,但你没有证据,所以你怀疑度比较低,有一天,你从老王家搜出了凶器,这个证据会加重你对老王的怀疑。 这是个哲学问题。 如何量化证据和论断呢?贝叶斯提出什么叫“信”,什么叫“不信”,对某个假设的相信程度应该用一个概率来表示P(假设)。 P=1就是绝对相信,P=0就...原创 2019-10-09 17:15:01 · 273 阅读 · 0 评论