AI-机器学习(11)-神经网络-前向传播

       神经网络说起来很神秘,在输入项少,隐藏层少的情况下还是不难的。本文手动构建了一,2项输入、2隐藏层,1输出的前向神经网络。

      基本的模式就是 过程->符号->公式->代码。

       程序过程就是录入数据项训练->结果。

     关注点就是公式->代码。

       1.我们构建的过程图

       2.符号说明

       3.每步公式

           3.1输入到第一个隐藏层

          3.2第二个隐藏层

         3.3第二个隐藏层到输出

         3.4 激活函数

       4.过程图代码

      5.损失函数公式与对应代码(L2正则修正交叉熵函数)


1、我们构建的过程图

         输入2->2隐藏层->输出1

   2.符号说明

      2.1X:输入

      2.2隐藏层两个符号

            Z=WX+B    //没经过激活函数

           H=RELU(Z)  //经过了激活函数

 

3.每步公式

           维度这就是(行,列)数的意思。

    3.1输入到第一个隐藏层

         

 3.2第一层到第二个隐藏层

              

                

3.3第二个隐藏层到输出

                   

3.4激活函数

  两个

   ()

   ()

  

 

4过程图代码

      4.1输入X并显示

                 

                     

  4.2 设定每个隐藏层的参数 特别是W b 得到H Z

        3步:1.输入隐含层参数,初始化wb

2 ,20 ,5 ,1是维度值 输入是2,第一层20 ,第二层5,输出是1

  

      2.根据4个值取W b的值,其实就是在范围值中取随机值

         

3 实现前向神经网络函数

        输入4项:x w,b 还有激活函数

       输出:H Z

5.损失函数公式与对应代码

           

其实是交叉熵函数加L2正则 结果,以下是交叉熵函数,为的是权重衰减,防止过拟合。

            

对应的代码

           

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值