功能和应用场景:给一张人脸图片,检测一下这张图片上的人脸是否带眼镜。
HOG特征描述子之类的基本概念就不赘述了。
流程分两部分:一部分输入正负样本,自己训练模型;
另一部分用训练好的模型文件检测:
其实所有的分类基本都是这个流程与步骤,关键在于模型文件的生成。
只是有一点不明:比如在进行行人检测时,都用的INRIA数据集,但是自己训练和OPENCV自带的模型出来的效果不一样。
功能和应用场景:给一张人脸图片,检测一下这张图片上的人脸是否带眼镜。
HOG特征描述子之类的基本概念就不赘述了。
流程分两部分:一部分输入正负样本,自己训练模型;
另一部分用训练好的模型文件检测:
其实所有的分类基本都是这个流程与步骤,关键在于模型文件的生成。
只是有一点不明:比如在进行行人检测时,都用的INRIA数据集,但是自己训练和OPENCV自带的模型出来的效果不一样。