论文要点
恢复的线性逆问题可以使用预训练的DDPM完成:1. 将降质矩阵使用SVD,得到分解矩阵;2. 使用分解矩阵将图像投影到降质类型间共享的谱空间;3. 谱空间中执行DDPM。
评价
同Track的方法同样很多,比如后续的DDNM、DiffPIR等。这些方法比较有趣,但依赖于确定性的降质过程,并且性能往往受限。
总结
图像恢复中许多有趣的任务可以归结为线性逆问题。最近解决这些问题的一系列方法使用随机算法,从给定测量值的自然图像的后验分布中取样。然而,有效的解决方案通常需要特定问题的监督训练来建立后验模型,而非特定问题的无监督方法通常依赖于低效的迭代方法。这项工作通过引入去噪扩散恢复模型(DDRM)来解决这些问题,DDRM是一种有效的、无监督的后验抽样方法。由变分推理驱动,DDRM利用预训练的去噪扩散生成模型来解决任何线性逆问题。我们演示了DDRM在多个图像数据集上的通用性,用于超分辨率、去模糊、修补和在不同量的测量噪声下着色。DDRM在不同的ImageNet数据集上的重建质量、感知质量和运行时间方面优于目前领先的无监督方法,比最接近的竞争对手快5倍。DDRM也很好地概括了观察到的ImageNet训练集分布的自然图像。
这是否是一个新的问题?
是的,这个问题是新的。在传统的图像修复方法中&