【论文笔记】3DGS压缩相关工作2篇

1. 背景介绍:NVS

神经辐射场(NeRFs)引入了一种基于多层感知机(MLP)的新型隐式场景表示方法,它将体密度编码作为几何形状和方向辐射的代理量。渲染通过光线行进的方式来执行。这一解决方案为新视图合成(NVS)带来了前所未有的视觉质量,但代价是训练多层感知机的优化过程极为耗时,且渲染速度很慢。有几种方法加速了训练和渲染过程,通常是利用空间数据结构或者像哈希这样的编码方式,不过牺牲了视觉质量。
近期,三维高斯飞溅(3DGS)提出了一种在空间中使用三维高斯基元的显式表示方法,每个基元都带有一组属性,如位置、协方差(各向异性缩放和旋转)、不透明度以及球谐(SH)系数,以此来表示方向辐射。三维高斯飞溅结合了此前所有方法在性能方面的优势:训练速度快、视觉质量高,并且是首个能在不降低质量的情况下实现实时渲染速度的方法。然而,原始方法会导致一种内存占用高得离谱的表示形式(对于所呈现的场景而言,内存占用达700M至1.2G)。这样的内存占用对于存储和处理来说是个问题,而且对于向移动设备进行流式传输来说更是难以承受。

### 3DGS技术的优点 3DGS3D Gaussian Stream)作为一种高效的三维建模方法,在处理自由视角视频流方面表现出显著的优势。它通过动态调整训练过程中涉及的参数,优化了计算资源的利用效率[^2]。具体而言: - **计算复杂度降低**:通过对训练过程中的冗余计算进行剔除,大幅减少了所需的计算量,从而提高了模型训练的速度和效率[^2]。 - **场景自适应能力**:该技术引入了一种场景自适应规划策略,能够灵活控制训练分辨率以及高斯基元的数量增长,确保在不同场景下均能维持高质量的重建效果[^2]。 - **无需预设基元数量**:借助一种创新性的高斯基元增长终点估计策略,3DGS能够在不预先设定最终高斯基元数量的前提下完成合理的规划,增强了系统的灵活性和适用范围[^2]。 这些特性使3DGS特别适合于需要实时性和高效性的应用场景,例如虚拟现实、增强现实等领域。 --- ### 3DGS技术的缺点 尽管3DGS具备诸多优势,但在实际应用中也存在一些局限性: - **对硬件性能的要求较高**:由于涉及到复杂的三维数据处理和实时渲染操作,3DGS可能需要依赖高性能GPU或其他专用硬件支持才能实现理想的运行速度[^1]。 - **初始配置成本较大**:为了达到最佳表现,通常需要经过精细调参的过程,这一阶段可能会消耗较多时间和人力资源。 - **点云数据固有缺陷的影响**:作为输入源之一的3D扫描设备所获取的数据往往具有稀疏性、无序性和不规则性等特点,这些问题会增加后续分析与处理难度[^3]。 此外,虽然相比传统方法有所改进,但仍然可能存在某些特定条件下无法完全满足需求的情况,比如极端光照环境下的视觉失真等问题[^4]。 --- ```python # 示例代码展示如何加载并初始化一个简单的3D GS对象 class ThreeDGaussianStream: def __init__(self, resolution=64, num_gaussians=512): self.resolution = resolution self.num_gaussians = num_gaussians def train(self, data_stream): # 动态调整训练参数逻辑省略... pass model = ThreeDGaussianStream() print("Model Initialized with Resolution:", model.resolution) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小米玄戒Andrew

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值