
入门AI模型量化需要从理论基础、工具实践和实战经验三方面逐步积累,以下是分阶段的学习路径和建议:
一、基础理论储备
1. 理解模型量化的核心目标
- 核心价值:通过降低模型参数和计算的精度(如FP32→INT8),实现模型轻量化(减小存储空间)、加速推理(降低计算复杂度)、减少能耗(适合边缘设备)。
- 核心挑战:在精度损失可接受的范围内完成上述优化,需平衡“压缩效率”与“模型性能”。
2. 必备前置知识
- 深度学习基础:熟悉神经网络结构(CNN/RNN/Transformer)、前向传播/反向传播原理、常见框架(PyTorch/TensorFlow)。
- 数值表示理论:了解浮点数(FP32/FP16)、定点数(INT8/INT16/UINT8)的存储格式与精度差异,掌握量化的数学定义(如线性量化公式:( x_{\text{quant}} = \text{round}(x_{\text{float}} / s + z) ),其中( s )为缩放因子,( z )为零点)。
- 量化分类:
- 按流程分:训练后量化(Post-Training Quantization, PTQ)、量化感知训练(Quantization-Aware Training, QAT)。
- 按精度分:全精度(FP32)、半精度(FP16)、低精度(INT8/INT4/BFP16等)。
- 按粒度分:逐层量化、逐通道量化(后者精度更高,尤其适合卷积层)。
二、工具与框架学习
主流框架已集成成熟的量化工具链,需掌握其核心API和流程:
1. PyTorch生态
- Quantization Toolkit (QAT):支持量化感知训练,需在训练过程中插入伪量化节点模拟低精度计算。
示例流程:from t

最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



