【深度学习新浪潮】如何入门人工智能?

在这里插入图片描述

入门人工智能(AI)需要结合数学基础、编程技能、机器学习理论和实践项目,逐步深入。以下是一个系统的学习路径,适合零基础或初学者参考:

一、打好基础:数学与编程

1. 数学基础(关键)

AI的核心依赖数学,尤其是以下领域:

  • 线性代数:向量、矩阵运算、特征分解等(用于理解神经网络、降维等)。
    ✅ 推荐资源:3Blue1Brown《线性代数本质》(B站/YouTube)、MIT线性代数课程。
  • 概率与统计:概率分布、贝叶斯定理、假设检验等(用于机器学习模型的不确定性分析)。
    ✅ 推荐资源:《概率论与数理统计》(陈希孺)、Coursera《Probability for Machine Learning》。
  • 微积分:导数、梯度下降、反向传播等(优化算
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小米玄戒Andrew

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值