【深度学习新浪潮】什么是混合精度分解?

在这里插入图片描述

混合精度分解是大模型压缩领域的一项核心技术,通过将模型参数或计算过程分解为不同精度的子单元,在保持性能的同时显著降低存储和计算成本。其核心思想是对模型中敏感度高、信息量大的部分采用高精度表示,而对冗余度高、敏感度低的部分采用低精度表示,从而在精度损失与压缩效率之间取得最优平衡。以下从技术原理、实现方法和典型案例三个维度展开分析:

一、技术原理与核心机制

1. 混合精度的理论基础
  • 精度-冗余权衡:大模型中不同层、不同参数对最终输出的贡献差异显著。例如,注意力机制中的Query/Key/Value矩阵包含关键语义信息,而前馈网络中的激活值可能存在较高冗余。
  • 离群值隔离:激活矩阵中常存在少量大幅值离群点(如绝对值>6),直接量化会导致显著精度损失。混合精度分解通过将这些离群点分离到高精度子矩阵中,其余部分用低精度表示,实现“保重点、压冗余”。
  • 低秩特性利用:模型参数增量(Delta
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小米玄戒Andrew

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值