混合精度分解是大模型压缩领域的一项核心技术,通过将模型参数或计算过程分解为不同精度的子单元,在保持性能的同时显著降低存储和计算成本。其核心思想是对模型中敏感度高、信息量大的部分采用高精度表示,而对冗余度高、敏感度低的部分采用低精度表示,从而在精度损失与压缩效率之间取得最优平衡。以下从技术原理、实现方法和典型案例三个维度展开分析:
一、技术原理与核心机制
1. 混合精度的理论基础
- 精度-冗余权衡:大模型中不同层、不同参数对最终输出的贡献差异显著。例如,注意力机制中的Query/Key/Value矩阵包含关键语义信息,而前馈网络中的激活值可能存在较高冗余。
- 离群值隔离:激活矩阵中常存在少量大幅值离群点(如绝对值>6),直接量化会导致显著精度损失。混合精度分解通过将这些离群点分离到高精度子矩阵中,其余部分用低精度表示,实现“保重点、压冗余”。
- 低秩特性利用:模型参数增量(Delta