
在大语言模型(LLM)处理长文档的场景中,注意力机制的二次方计算复杂度始终是难以逾越的瓶颈——数千字的文本需要消耗大量token资源,既推高了推理成本,又限制了处理效率。2025年10月,DeepSeek-AI推出的开源OCR模型DeepSeek-OCR,以"上下文光学压缩"这一创新范式,为解决该问题提供了突破性思路。本文将从技术原理、核心优势、实战教程到应用场景,全面拆解这款重新定义OCR边界的模型。
一、打破传统:DeepSeek-OCR的核心创新
传统OCR采用"检测→识别→版面还原"的三段式架构,在长文档、复杂版面场景下常面临上下文断裂、结构恢复脆弱等问题。DeepSeek-OCR则以LLM为中心,构建了"视觉-文本压缩"的全新范式,其核心创新体现在三个维度。
1. 上下文光学压缩:用视觉token重构效率边界
DeepSeek-OCR团队的关键洞察在于:图像天然的二维空间编码能力,能以远少于文本token的代价承载同等信息。例如2000字文档需约3000个文本token,而经视觉编码后仅需256个视觉token,压缩比达11.7:1,且识别精度仍保持98.5%。
这种压缩并非简单的信息删减,而是通过视觉模态的空间关联性实现高效编码——如同人类快速浏览书页时形成的视觉记忆,既保留关键信息又减少认知负荷。实验显示,在6
订阅专栏 解锁全文
13万+

被折叠的 条评论
为什么被折叠?



