4.2.1 Measures of Financial Risk

Market Risk Measurement and Management

1. Measures of Financial Risk

1.1 Coherent Risk Measures

Monotonicity: If (regardless of what happens) a portfolio always produces a worse result than another portfolio, it should have a higher risk measure.

Translation Invariance: If an amount of cash K K K is added to a portfolio, its risk measure should decrease by K K K.

Homogeneity: Changing the size of a portfolio by multiplying the amounts of all the components by λ \lambda λ results in the risk measure being multiplied by λ \lambda λ.

Subadditivity: For any two portfolios, A and B, the risk measure for the portfolio formed by merging A and B should be no greater than the sum of the risk measures for portfolios A and B.

1.2 Mean-Variance Framework

In mean-variance(or standard deviation) framework, mean and variance is used to model financial risk and return follows normal distribution.The mean return is used to measure the expected return, and the standard deviation is used to measure the risk.

The normal distribution is often assumed for the returns on financial variables. It is a convenient choice because all we need is the mean and standard deviation of the returns.

In practice, the distribution of financial variables tend to be skewed or have much fatter tails, then the normality assumption is inappropriate and the mean-variance framework can produce misleading estimates of risk. The use of the standard deviation as a risk measurement is not appropriate for non-normal distribution.
在这里插入图片描述

1.3 Value at Risk

1.2.1 Definition of VaR \text{VaR} VaR

VaR \text{VaR} VaR is the loss that we do not expect to be exceeded over the time horizon at the specified confidence level.

‘10-day 99 % 99\% 99% VaR \text{VaR} VaR is 10 10 10 million’ means that we are 99 % 99\% 99% certain that the loss during the next 10 days will be less than USD 10 10 10 million, or there is a probability of only 1 % 1\% 1% that the loss over the next 10 days will be greater than USD 10 10 10 million.

Assume that asset returns conform to a normal distribution.

VaR ( X % ) = ∣ E ( R ) − Z X % × σ ∣ \text{VaR}(X\%)=|E(R)-Z_{X\%}\times \sigma| VaR(X%)=E(R)ZX%×σ

VaR ( X % ) dollar = ∣ E ( R ) − Z X % × σ ∣ × Asset Value \text{VaR}(X\%)_{\text{dollar}}=|E(R)-Z_{X\%}\times \sigma| \times \text{Asset Value} VaR(X%)dollar=E(R)ZX%×σ×Asset Value

Z X % = { 1.28 , when    X = 10 1.65 , when    X = 5 2.33 , when    X = 1 Z_{X\%}=\begin{cases}1.28, & \text{when}\; X=10 \\ 1.65, & \text{when}\; X=5 \\ 2.33, & \text{when}\; X=1\end{cases} ZX%= 1.28,1.65,2.33,whenX=10whenX=5whenX=1

Cindy is a trader and she is using VaR \text{VaR} VaR to measure the risk of her portfolio. She assumes the asset return distribution is normally distributed. The portfolio daily standard deviation is 2.5 % 2.5\% 2.5% and has a current value of $ 7.8 7.8 7.8 million. Please calculate the daily percentage VaR \text{VaR} VaR( 5 % 5\% 5%) and daily dollar VaR \text{VaR} VaR( 5 % 5\% 5%) of this portfolio.

VaR ( 5 % ) = 2.5 % × 1.645 = 4.11 % \text{VaR}(5\%)=2.5\%\times1.645=4.11\% VaR(5%)=2.5%×1.645=4.11% ( 默认均值是 0 0 0

VaR ( 5 % ) dollar = 0.0411 × 7.8    million = 320 , 775 \text{VaR}(5\%)_{\text{dollar}}=0.0411\times 7.8\;\text{million} = 320,775 VaR(5%)dollar=0.0411×7.8million=320,775

The VaR for an investment opportunity is a function of two parameters:

  • The time horizon: VaR \text{VaR} VaR increases when the holding period is longer.
  • The confidence level: VaR \text{VaR} VaR increases when the degree of confidence increases.

Assuming return is normally distributed and E ( R ) = 0 E(R)=0 E(R)=0, VaR ( X % ) = ∣ Z X % × σ ∣ \text{VaR}(X\%)=|Z_{X\%}\times\sigma| VaR(X%)=ZX%×σ

Time horizon: Square root rule can be used.

σ J-periods = σ 1-period × J → VaR ( X % ) J-periods = VaR ( X % ) 1-periods × J \sigma_{\text{J-periods}}=\sigma_{\text{1-period}}\times\sqrt{J} \to \text{VaR}(X\%)_{\text{J-periods}}=\text{VaR}(X\%)_{\text{1-periods}}\times\sqrt{J} σJ-periods=σ1-period×J VaR(X%)J-periods=VaR(X%)1-periods×J

The confidence level

VaR ( New % ) = VaR ( Old % ) × ( Z New % / Z Old % ) \text{VaR}(\text{New}\%)=\text{VaR}(\text{Old}\%)\times(Z_{\text{New}\%}/Z_{\text{Old}\%}) VaR(New%)=VaR(Old%)×(ZNew%/ZOld%)

A risk analyst has to adjust the 95 % 95\% 95% daily VaR \text{VaR} VaR into 99 % 99\% 99% weekly VaR to meet the new risk management policy. The 95 % 95\% 95% daily VaR \text{VaR} VaR is $ 3 , 300 , 000 3,300,000 3,300,000. Please compute the 99 % 99\% 99% weekly VaR \text{VaR} VaR. Assuming daily mean return of zero and 5 5 5 trading days in a week.

VaR ( 1 % ) daily = VaR ( 5 % ) daily × ( 2.33 / 1.65 ) = 4 , 660 , 000 \text{VaR}(1\%)_{\text{daily}}=\text{VaR}(5\%)_{\text{daily}}\times(2.33/1.65)=4,660,000 VaR(1%)daily=VaR(5%)daily×(2.33/1.65)=4,660,000

VaR ( 1 % ) weekly = VaR ( 1 % ) daily × 5 = 10 , 420 , 777 \text{VaR}(1\%)_{\text{weekly}}=\text{VaR}(1\%)_{\text{daily}}\times\sqrt{5}=10,420,777 VaR(1%)weekly=VaR(1%)daily×5 =10,420,777

1.2.2 Limitations of VaR \text{VaR} VaR

The VaR \text{VaR} VaR only tells us the most we can lose if a tail event does not occur. (e.g., it tells us the most we can lose 95 % 95\% 95% of the time.) If a tail event does occur, we can expect to lose more than the VaR \text{VaR} VaR, but the VaR \text{VaR} VaR itself gives us no indication of how much that might be.

VaR \text{VaR} VaR is not subadditive. We can only make the VaR \text{VaR} VaR subadditive by imposing the severe restriction that returns distribution is elliptically distributed.

Suppose there are two bonds, Bond X and Bond Y. Each has a probability default of 3 % 3\% 3% and $ 1000 1000 1000 face value, If default occurs, zero value will be recovered. These two bonds are identical and independent. Calculate the 95 % 95\% 95% VaR of single bond and then sum then up. Compare the sum of single bond VaR with portfolio V a R VaR VaR.

Portfolio of Bond X and Bond Y
Number of
Defaulted Bond
LossProbabilityCumulative
Probability
2 2 2 2000 2000 2000 C 2 2 ( 3 % ) 2 ( 97 % ) 0 = 0.09 % C^2_2(3\%)^2(97\%)^0=0.09\% C22(3%)2(97%)0=0.09% 0.09 % 0.09\% 0.09%
1 1 1 1000 1000 1000 C 2 1 ( 3 % ) 1 ( 97 % ) 1 = 5.82 % C^1_2(3\%)^1(97\%)^1=5.82\% C21(3%)1(97%)1=5.82% 5.91 % 5.91\% 5.91%
0 0 0 0 0 0 C 2 0 ( 3 % ) 0 ( 97 % ) 2 = 94.09 % C^0_2(3\%)^0(97\%)^2=94.09\% C20(3%)0(97%)2=94.09% 100 % 100\% 100%
Single Bond ( Bond X or Bond Y)
LossProbabilityCumulative
Probability
1000 1000 1000 3 % 3\% 3% 3 % 3\% 3%
0 0 0 97 % 97\% 97% 100 % 100\% 100%

VaR 5 % ( Portfolio ) = 1000 \text{VaR}_{5\%}(\text{Portfolio})=1000 VaR5%(Portfolio)=1000

VaR 5 % ( Single Bond ) = 0 \text{VaR}_{5\%}(\text{Single Bond})=0 VaR5%(Single Bond)=0

VaR 5 % ( Portfolio ) > VaR 5 % ( Bond X ) + VaR 5 % ( Bond Y ) \text{VaR}_{5\%}(\text{Portfolio})> \text{VaR}_{5\%}(\text{Bond X})+ \text{VaR}_{5\%}(\text{Bond Y}) VaR5%(Portfolio)>VaR5%(Bond X)+VaR5%(Bond Y)

1.4 Expected Shortfall

Expected Shortfall( E S ES ES) is a risk measure that does take account of expected losses beyond the VaR level, which is also called conditional VaR \text{VaR} VaR ( C-VaR \text{C-VaR} C-VaR) or tail loss.

It is the expected value of the worst ( 100 − X ) % (100-X)\% (100X)% of losses.

E S ES ES gives an average amount of unfavorable events over a specific period while VaR \text{VaR} VaR tells nothing about the exact amount of loss. E S ES ES is the coherent risk measure, and it meets the property of sub-additivity, while VaR \text{VaR} VaR does not.

A trader accumulated 100 100 100 daily returns for a 2 2 2 million portfolio. After sorting the returns into ascending order, the lowest ten returns were provided

− 12.3 % -12.3\% 12.3%, − 8.7 % -8.7\% 8.7%, − 6.5 % -6.5\% 6.5%, − 6.34 % -6.34\% 6.34%, − 3.2 % -3.2\% 3.2%, − 2 , 87 % -2,87\% 2,87%, − 1.2 % -1.2\% 1.2%, − 0.59 % -0.59\% 0.59%, − 0 , 05 % -0,05\% 0,05%, 0.47 % 0.47\% 0.47%

Please calculate the daily Expected Shortfall at 5 % 5\% 5% significance level.

ReturnProbabilityCumulative
Probability
− 12.30 % -12.30\% 12.30% 1 % 1\% 1% 1 % 1\% 1%
− 8.70 % -8.70\% 8.70% 1 % 1\% 1% 2 % 2\% 2%
− 6.50 % -6.50\% 6.50% 1 % 1\% 1% 3 % 3\% 3%
− 6.34 % -6.34\% 6.34% 1 % 1\% 1% 4 % 4\% 4%
− 3.20 % -3.20\% 3.20% 1 % 1\% 1% 5 % 5\% 5%
− 2.87 % -2.87\% 2.87% 1 % 1\% 1% 6 % 6\% 6%
− 1.20 % -1.20\% 1.20% 1 % 1\% 1% 7 % 7\% 7%
− 0.59 % -0.59\% 0.59% 1 % 1\% 1% 8 % 8\% 8%
− 0.05 % -0.05\% 0.05% 1 % 1\% 1% 9 % 9\% 9%
0.47 % 0.47\% 0.47% 1 % 1\% 1% 10 % 10\% 10%

E S daily ( 5 % ) = ( 12.3 % + 8.7 % + 6.5 % + 6.34 % ) / 4 = 8.49 % ES_{\text{daily}}(5\%)=(12.3\%+8.7\%+6.5\%+6.34\%)/4=8.49\% ESdaily(5%)=(12.3%+8.7%+6.5%+6.34%)/4=8.49%

1.5 Spectral Risk Measures

Spectral risk measures provide the weighted means of the quantiles of the loss distributions.

E S ES ES is a special case. E S ES ES assigns an equal amount of weight to all loss levels greater than the VaR \text{VaR} VaR.

VaR \text{VaR} VaR is also a special case. All the weight is assigned to one specific percentile (takes no account of losses more than the X X X percentile point).

If a risk measure is coherent, the weights should be a non-decreasing function of the percentile of a loss distribution.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值