numpy记录要点

一/安装

pip install numpy

二/引用

import numpy as np

三/使用

1.数组

  • 创建一个ndarray数组

data1=np.array([1,2,3,4,5])

data2=np.array([[1,2,3],[4,5,6]])

  • 数组维度

print(data2.ndim)

  • 数组维度长度(几行几列)

print(data2.shape)

  • 创建一个全是0的数组

data=np.zeros(10)

  • 创建一个全是1的二维数组

data=np.ones((2,3))

  • 获取数组中某个数字,用索引

data=np.arrange(10)

print(data[5])

data2=np.array([[1,2,3],[4,5,6]])

print(data2[0][1])

print(data2[0,1])

  • 获取数组中某几个数字,用切片

data=np.arrange(10)

print(data[3:6])

注意:切换后得到的数据还是原始数据,任何修改都反应到原始数据上

dataslice[2]=99

如果需要不影响原始数据,切片时使用

data[3:6].copy()

  • 变换数组的维度

data=np.arrange(10)

print(data)

从一维变成二维

print(data.reshape((2,5)))

转置

print(data.reshape((2,5)).T)

  • 对数组元素求平方根

data=np.arrange(10)

print(np.sqrt(data))

其他一些方法

函数说明
abs求绝对值
square求平方
ceil向上取整,计算大于等于该元素的最小整数
floor

向下取整,计算小于等于该元素的最大整数

isnan        计算哪些元素是非数字
sign计算正负号,1 0 -1

2.数组运算

  • 两个数组相加

data1=np.array([1,2,3])

data2=np.array([4,5,6])

print(data1+data2)

print(np.add(data1,data2))

其他方法:substract,multiply,divide,power,fmax,fmin

  • 求和

data=np.arrange(10)

print(data.sum())

  •  求平均值

print(data.mean())

其他统计:std,min,max,argmin,argmax

  • 数组排序

data.sort()

3.其他

  • 文件读取

data=np.genfromtxt('data.txt',delimiter=',')

  • 类型转换

print(data.astype(int))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

agrapea

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值