- 博客(204)
- 资源 (11)
- 收藏
- 关注
原创 Focal Loss的理解以及在多分类任务上的使用(Pytorch)
理解关键点一二分类和多分类的交叉熵的区别二分类交叉熵多分类交叉熵理解关键点二多分类和二分类focal loss理解关键点三alpha到底该如何设置
2020-12-17 11:12:26
47410
43
原创 python中的sort和sorted用法汇总
sort() 和 sorted() 之间的主要区别在于 sorted() 函数接受一个列表并返回一个新的排序副本,sorted不改变原来的列表,重新生成排序后的列表,其他参数用法和sort一致。sort()是python内置的列表排序方法,使用该函数可以快速的对列表进行排序。如果列表中的元素是元组(tuple),key参数也支持对这种列表进行多重排序。可以使用这个表达式,来完成按照列表元素的平方来排序的操作。可以看到sort()是对原列表进行排序的,不返回结果。例如,下面这个表达式实现的是平方的操作。
2026-01-30 17:09:35
178
原创 Flow-Planner疑问汇总
为啥midpoint就比Euler效果好?为啥midpoint是二阶求解器,euler就是一阶呢?第一步都一样,第二步的起点不同,两倍euler是从中点时刻(开始,所以midpoint和两倍步数的Euler是不一样的。)开始,midpoint从最初时刻。写成公式,Euler(欧拉)法。Midpoint法,分两步。这里需要用到泰勒展开公式,euler求解只用到了。
2026-01-21 18:03:48
598
原创 Flow-Planner代码阅读(4):推理+采样过程
这里的solver是调用的flow-matching库中的求解器,位置在 flow_matching/flow_matching/solver/ode_solver.py,对应的sample()函数为。但是flow_matching也没有实现ODE求解器,而是调用了torchdiffeq库的odeint求解器,位置在torchdiffeq/torchdiffeq/_impl/odeint.py。Midpoint中的func就是velocity_model,也就是单次生成速度场的过程。
2026-01-21 16:59:31
370
原创 Flow-Planner代码阅读(3):前向过程
当做无条件样本时,只遮挡前 cfg_neighbor_num 个邻居,其余邻居始终保留,从而避免“完全无邻居”的极端情况。
2026-01-16 11:00:38
65
原创 Flow-Planner代码阅读(2):数据加载
代码在flow_planner/data/dataset/nuplan.py中,类名NuPlanDataset(),通过__getitem__()函数随机获取某一帧数据。
2026-01-14 15:51:36
52
原创 Flow-Planner代码阅读(1):数据预处理
参考中的第二节,配置数据预处理代码。Flow-Planner数据预处理的核心代码在data_processor.py中的work()函数中。该过程主要包括获取agent历史信息,获取地图信息、获取agent未来信息。
2026-01-08 17:00:03
345
原创 plantf/pluto/词表 三种模型在nuplan场景上的效果对比
注:我在nuplan可视化代码的基础上添加了routing、他车预测轨迹、自车多模态轨迹的可视化,自车主模态(top0)用彩色轨迹线表示。
2025-11-20 10:42:47
193
原创 DiT block学习
最近在做DIffusion-Planner的相关工作,其中用到了Dit模块,这个模块来自论文《Scalable Diffusion Models with Transformers 》,主要是开发了一种基于Transformer的扩散模型,Diffusion Transformers(DiT),这篇文章记录一下对DiT结构的学习。
2025-11-13 18:13:35
312
原创 DiffusionPlanner复现
Diffusion-Planner没有val的过程,每20个epoch保存一个模型,我对epoch300~epoch500模型都做了val14、test14-random、test14-hard测试集都做了仿真,指标如下,可以看到跟论文中的最优指标还是有点差异的。错误修改:Diffusion-Planner/diffusion_planner/model/module/decoder.py的初始化中。我这边一台机器生产100万数据大概需要2周左右的时间,觉得慢的可以用多台机器并行跑。master机器执行。
2025-09-05 16:21:58
1895
33
原创 Nuplan开环与闭环评测指标计算汇总
评测代码位置评测代码逻辑先进行前向推理,保存每次推理的结果推理完调用回调函数测评是其中的一个回调函数,开始调用metric_callback进行评测。run_metric_engine()函数nuplan/planning/metrics/metric_engine.py中的MetricEngine类computecompute_metric_results函数逐个调用评分的子项。
2025-02-13 15:43:42
2330
原创 Pytorch lightning多机多卡训练通讯问题(NCCL error)排查
NCCL是英伟达基于NCIDIA-GPU的一套开源的集合通信库,如其官网描述:NVIDIA集合通信库(NCCL)实现了针对NVIDIA GPU性能优化的多GPU和多节点集合通信原语。在大多数情况下,NCCL(https://developer.nvidia.com/nccl)作为底层的集合通信库为分布式深度学习框架提供了多机通讯能力、我们只要安装即可,在分布式深度学习相关的任务或代码中通常感知不到其存在。根据报错提示猜测是两台机器的通信出了问题,需要给NCCL指定用于通信的网络接口名称,即网卡名。
2024-10-30 17:48:54
3743
2
原创 点云语义分割:Cylinder3D多卡训练
点云语义分割:Cylinder3D多卡训练一、问题二、DDP三、测试四、精度评价一、问题二、DDP三、测试四、精度评价
2024-05-21 18:15:53
614
1
原创 点云语义分割:使用Cylinder3D训练SemanticKITTI数据集
将该路径修改到config/semanticktti.yaml文件中的data_path节点下。下载semanticKITTI数据集的点云数据和标签,解压到一起。系统:Ubuntu18。
2024-04-13 21:07:23
1856
6
原创 3D点云目标检测:CT3D解读(未完)
就是基于单阶段的网络获取box作为Proposal,文章中使用的是Second网络,其他的如pointpillar、centerpoint都可以作为。对于给定的一个proposal,选择ROI区域内的点,ROI区域是一个没有高度限制的圆柱体,然后随机选取ROI范围内的256个点。训练过程中confidence的真值被设置为Proposals和对应的gt的3D IoU值。将经过编码-解码模块的输出送入两个FFN网络中,预测得到confidence和相对于输入的Proposal的box残差值。
2023-11-27 15:43:27
2345
原创 torch-scatter安装失败解决办法
安装torch-scatter时可以直接下载whl安装,但是会遇到版本不一致的问题,虽然可以安装但是会提示.so文件不存在或者undefined symbol: 的问题,可以在下面的地址中找到跟自己的torch和cuda版本对应的torch-scatter安装文件。
2023-10-11 15:01:33
2939
原创 3D点云目标检测:Centerformer训练waymo数据集
编译正确的输出如下图,bazel-bin/waymo_open_dataset/metrics/tools/compute_detection_metrics_main就是编译得到的检测精度评估工具。得到模型精度指标有两种方式,一种是提交到waymo官方网站进行评估,第二种是在本地进行评估。然后执行语句,编译时间特别长,我差不多用了一个多小时,如何能够翻墙应该会很快,编译正确的截图忘记保存了。模型训练结束后在work_dir/waymo_centerformer目录下可以看到保存的结果。
2023-09-18 17:43:26
2980
1
原创 点云目标检测:open3d多窗口联动可视化
多个模型之间的对比除了指标之外,还需要可以直接直观的对比可视化结果,这次介绍一下如何使用open3d同时打开两个窗口分别加载两个模型的结果进行对比,同时实现两个窗口的联动,也就是当一个窗口拖动或者缩放时另外一个窗口也跟着做同样的变换。
2023-04-16 19:00:23
4632
5
原创 3D点云目标检测:MPPNet网络训练waymo数据集
注意事项,要求内存大于100G,使用gt_sampling策略,不要使用share_memory策略。注意:验证集的版本要新一点,旧的的验证集合没有目标的点数,无法区分level1和level2。在这里记录一下MPPNet网络训练waymo数据的过程。三、训练centerpoint网络。一、waymo数据集介绍。二、waymo数据预处理。四、训练mppnet网络。
2023-04-09 00:55:58
5928
6
原创 点云可视化:使用open3d实现点云连续播放
模型训练完成后除了看ap等定量的指标是否变好外,还需要将结果可视化出来,直接观察模型的输出结果,往往我们的数据会比较多,如果单帧的看的话会比较麻烦,需要频繁的关闭窗口,最好是能直接连续的播放数据和模型的推理结果。我这里以waymo数据集中的一个场景分别给出open3d连续播放可视化的实现过程,样例数据已经上传网盘。(这里只放出第一种和第三种,第二种太过复杂么,需要设计很多控制变量)
2023-03-26 18:51:16
6365
7
原创 交叉熵损失导数推理
在深度学习网络训练中,交叉熵损失是一种经常使用的损失函数,这篇文章里我们来推导一下交叉熵损失关于网络输出z的导数,由于二分类是多分类的特殊情况,我们直接介绍多分类的推导过程。一、Softmax交叉熵损失求导基于softmax的多分类交叉熵公式为LSCE=−∑j=1Cyjlog(pj)L_{S C E}=-\sum_{j=1}^{C} y_{j} \log \left(p_{j}\right)LSCE=−j=1∑Cyjlog(pj)其中CCC表示类别总数,包含背景类别,pjp_jpj通过S
2022-04-14 15:46:36
6868
原创 Equalization Loss理解-更新中
文章目录一、前言二、公式三、Pytorch实现四、参考一、前言二、公式三、Pytorch实现四、参考
2022-04-01 15:15:43
2798
1
原创 遥感影像道路提取:Improved Road Connectivity by Joint Learning of Orientation and Segmentation
文章目录一、道路提取难点二、本文贡献三、方法3.1、方向学习3.2、连接优化3.3、堆叠式多分支模块一、道路提取难点二、本文贡献三、方法3.1、方向学习3.2、连接优化3.3、堆叠式多分支模块...
2022-02-23 16:13:08
9169
1
原创 Numpy:repeat用法图解
一、repeat原理用法:numpy.repeat(a,repeats,axis=None) a:输入数组 repeats: axs:二、实际应用
2022-01-27 11:17:04
3827
原创 Numpy:tile用法图解
一、repeat()根据axis来确定整体来进行复制二、title()用法:numpy.tile(A, reps)参数:A:输入矩阵reps:数组A沿每个轴的重复次数数组复制原理介绍reps的长度为d,复制的结果数组的维度是max(d,A.dims)。如果A的维度小于reps的长度(A.ndim<d),数组A将会被增加新的轴,新轴的尺寸为1,比如A的形状是(2,3),reps是[2,2,2],这时reps的长度d=3,数组A的形状A.ndim=2,复制前数组A先增加一个轴,
2022-01-25 17:35:06
2718
MODIS影像全球行列号格网矢量数据
2021-03-25
遥感专业处理软件PCI 2015破解版+中文使用说明
2019-03-28
faster rcnn pb模型目标识别C++可执行程序(cpu版本)
2020-09-25
全球中等分辨率海岸线shapefile数据
2020-04-26
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅