植被指数是农作物生长分析的重要参数,在遥感领域中,由于植被指数有利于观测农作物的涨势和发展状况,从而被广泛应用于农业领域。
(一)、在学习和使用植被指数时的一些基本认识
1.健康的绿色植被在NIR和R的反射差异比较大,原因在于R对于绿色植物来说是强吸收的,NIR则是高反射、高透射的;
2.建立植被指数的目的是有效地综合各有关的光谱信号,增强植被信息,减少非植被信息;
3.植被指数有明显的地域性和时效性,受植被本身、环境、大气等条件的影响。
(二)、植被指数提取方法
如果是偏农业信息技术的,可以花时间学一些基本的编程语言,如python,或者学习一些拼接处理软件,如Pix4D、Photoscan、Qgis、Envi等。光靠无人机自带的拼接软件估计得不到想要的数据,更别说更深入地分析了。如果课题组研究重心还是在传统农业研究,只是为了借助无人机快速获取想要的指标数据,方便后续分析做实验,直接选自带图像分析功能的无人机一体化系统PhenoAI air,操作简单,提取的数据也都是可量化的。
(三)、以下列举部分植被指数的应用
1.归一化差异植被指数 (NDVI)
由于植被在近红外波段处有较强的反射,其反射率值较高,而在红波段处有较强的吸收,反射率值较低,因此NDVI通过计算近红外波段和红波段之间的差异来定量化植被的生长状况。该指数可反映植被的健康情况及植被的长势,由于计算简单,指示性好,被广泛应用于农业、林业、生态环境等领域,同时也是生态物理参数反演的重要输入参数,是目前应用最为广泛的植被指数之一。在典型的光谱植被指数中,NDVI是最适合监测作物生长动态的指数之一,因为它测量植物中的光合作用的活性生物量。然而,该植被指数对土壤亮度和大气影响非常敏感,在 EVI、SAVI、ARVI、GCL 或 SIPI 等其它指数中有所缓解。
公式:NDVI = (NIR – RED) / (NIR + RED)
特点:NDVI 是遥感中最常见的植被指数,它可以在整个作物生产季节使用,除非植被覆盖太稀少,因此它的光谱反射率太低。
使用:NDVI 值在作物最活跃生长阶段的季节中期最准确。
2.红边叶绿素植被指数 (RECl)
ReCI 植被指数对受氮滋养的叶子中的叶绿素含量有反应,ReCI 显示了冠层的光合活性。
公式:ReCI = (NIR / RED) -1
特点:由于叶绿素含量直接取决于植物中的氮含量,这是植物“绿色”的原因,因此遥感中的这种植被指数有助于检测黄色或落叶区域。
使用:ReCI 值在植被活跃发育阶段最有用,但不适用于收获季节。
3.归一化差异红边植被指数 (NDRE)
NDRE指数结合了近红外 (NIR) 光谱波段和特定波段,用于可见红色和Red-NIR 过渡区(所谓的红边区域)之间的窄范围。为获得最佳数据精度,建议将 NDRE 与 NDVI 结合使用。
公式:NDRE = (NIR – RED EDGE) / (NIR + RED EDGE)
特点:给定的植被指数适用于高密度树冠覆盖。
使用:NDRE 通常用于监测已达到成熟阶段的作物。
4.改良土壤调整植被指数 (MSAVI)
MSAVI植被指数旨在减轻土壤对作物监测结果的影响,因此,它适用于 NDVI 无法提供准确值的情况,特别是裸土比例高、植被稀少或植物中叶绿素含量低的情况。
公式:MSAVI = (2 *NIR + 1 – sqrt ((2 * NIR + 1)2 – 8 * (NIR– RED))) / 2
特点:由于 MSAVI 针对土壤效应进行了调整,并且对田间的早期植被敏感,因此即使地球上几乎没有作物覆盖,它也能正常工作。
使用:MSAVI 在作物生产季节刚开始时很有用(幼苗开始生长时)。
5.绿色归一化差异植被指数 (GNDVI)
GNDVI 指数是对 NDVI 的修改,它也使用近红外波段,但用绿波段代替红波段(540 至 570 nm)。
公式:GNDVI = (NIR – GREEN) / (NIR + GREEN)
特点:GNDVI 比 NDVI 更准确地测量叶绿素含量。
使用:在没有红波段时,检测枯萎或老化的作物并测量叶子中的氮含量,监测茂密树冠或成熟阶段的植被。
6.归一化差值水分指数(NDMI)
归一化差值水分指数(NDMI)是 Hardisky 等人通过计算近红外与短波红外之间的差异来定量化反映植被冠层的水分含量情况。
公式:NDMI = (NIR - S1) / (NIR + S1)
特点:在卫星遥感数据中,由于植被在短波红外波段对水分的强吸收,导致植被在短波红外波段的反射率相对于近红外波段的反射率要小,因此NDMI与冠层水分含量高度相关,可以用来估计植被水分含量,而且NDMI与地表温度之间存在较强的相关性,因此也常用于分析地表温度的变化情况。
使用:作物水分含量与地表温度的变化情况。
7.土壤调节植被指数 (SAVI)
植被稀疏区域,土壤暴露,会影响红波段和近红外波段的反射率值,从而影响 NDVI 的估算结果。为了消除土壤背景的影响,Huete 提出了土壤调节植被指数(SAVI),在NDVI的基础上加入土壤调节因子L:
公式:SAVI = ((NIR - RED) / (NIR + RED + L)) * (1 + L)
特点:L 从 –1 到 +1 不等,具体取决于问题区域的绿色植被密度。在绿色植被高的地区 L=0,在这种情况下,SAVI 与 NDVI 相同。相反,对于低绿色植被区,L = 1。最典型的是,L设置为 0.5 以适应大多数土地覆盖。
使用:用于分析青苗;适用于植被稀疏(不到总面积的 15%)和裸露土壤表面的干旱地区。
8.优化的土壤调节植被指数 (OSAVI)
OSAVI 植被指数是修改后的 SAVI,也使用 NIR 和红光谱中的反射率。两个指标的区别在于 OSAVI 考虑了冠层背景调整因子的标准值(0.16)。
公式:OSAVI = (NIR – RED) / (NIR + RED + 0.16)
特点:当冠层覆盖率较低时,与 SAVI 相比,该调整允许 OSAVI 的土壤变化更大。OSAVI 对超过 50% 的冠层覆盖率具有更好的敏感性。
使用地点:通过树冠监测裸露土壤区域的低密度植被区域。
9.结构不敏感色素植被指数 (SIPI)
SIPI植被指数有利于分析具有可变冠层结构的植被。它估计了类胡萝卜素与叶绿素的比率:增加的值表明植被压力。
公式: SIPI = (NIR – BLUE) / (NIR – RED)
特点:增加的 SIPI 值(高类胡萝卜素和低叶绿素)可能意味着作物病害,通常会导致植被中的叶绿素损失。
使用:用于在冠层结构或 LAI 高度可变的地区监测植物健康,以识别作物病害或其它压力原因的早期迹象。
另外包括Red edge(红边)、NIR(近红外)、GNDVI(绿光归一化差值植被指数)、 NDRE(归一化差异红边指数)、NDWI(归一化水分指数)、 SAVI(土壤调整植被指数)、RDVI(重归一化植被指数)、ARVI(大气阻抗植被指数)、TVI(三角植被指数)等都是重要的植被指数。不论是高光谱、多光谱还是可见光图像PhenoAI air都能自动选取可见光波段进行显示,方便用户进行作物小区的标记。