- 博客(230)
- 资源 (1)
- 收藏
- 关注
原创 Python:如何对FY3D TSHS的数据集进行重投影并输出为TIFF文件以及批量镶嵌插值?
由于代码中注释较为详细,因此博客中部分操作一笔带过。
2024-04-09 12:28:52
2064
原创 遥感&深度学习:CNN-LSTM模型用于NDVI的简单预测和特征重要性评估(Pytorch代码深度剖析)
这是一次完整的关于时空遥感影像预测相关的深度学习项目,后续有时间更新后续部分。pytroch的模型的基本使用包括LSTM和Linear等的框架构建、训练评估和预测;遥感影像如何传入模型中训练,包括数据加载和预输入的要求等,对于大型数据集如何解决内存不足问题(可能会更新);遥感图像的处理例如裁剪掩膜,nc读取相关数据集并glt校正输出为tiff文件等诸多处理。Landuse(年土地利用): 2001 - 2020LST(月均地表温度): 200002 - 202210NDVI。
2024-03-15 22:27:52
7450
13
原创 Python:如何将MCD12Q1\MOD11A2\MOD13A2原始数据集批量输出为TIFF文件(镶嵌/重投影/)?
之前一段时间一直使用ENVI IDL处理遥感数据,但是确实对于一些比较新鲜的东西IDL并没有python那么好的及时性,封装的东西也较为底层需要自己实现的东西相对python还是不那么方便,当然它也训练了我对于数据的处理能力。另外最近一直在探索深度学习,IDL相对小众,在时间不充裕的情况,我将倾向于使用Python进行学习而非IDL。因此,目前相当长一段时间我将同时兼容Python和IDL两门语言,但正如你所见,IDL的趋势正在减弱。
2023-12-16 00:15:58
2834
原创 ENVI IDL:如何MODIS GRID产品进行批量镶嵌、重投影(GLT校正)?
时间类的定义相关概念和基本使用查看:https://blog.csdn.net/m0_63001937/article/details/133975751;初始化初始化父类对象return, 1;1表示成功实例化对象end;若不传入参数则默认该格式化字符串end;更新endif;年积日转化为年月日endend;更新endif;年月日转年积日endend;更新年月日等属性endifendifend;取值;如果用户请求返回某一属性, 那么将其返回。
2023-11-06 12:55:46
1446
5
原创 ArcMap:第二届全国大学生GIS技能大赛(广西师范学院)详解-上午题
现有某区域一幅有投影信息的单波段遥感图像(tm00.img)、DEM数据、两幅多光谱遥感图像(tm01.img\tm02.img)及该区域的矢量数据图层文件(bound.shp),其中有一幅多光谱图像无投影信息(tm02.img),现需要对无投影信息的多光谱图像进行几何校正、镶嵌、裁切等处理,并利用矢量数据裁剪镶嵌后的多光谱数据,利用裁剪后的多光谱数据及DEM数据,提取区域植被覆盖信息。朝北缓坡植被:NDVI大于0.25,坡度小于20°,朝北非朝北缓坡植被:NDVI大于0.25,坡度小于20°,非朝北。
2023-10-08 20:59:04
2930
5
原创 ENVI IDL:OMI-NO2产品均值计算与可视化(附Python代码)-年、季、月均值计算
月等信息,然后分配到不同的[]中,[]在图示中不是数组而是列表(在IDL中为链表,实际类似于Python的列表), 由于我们事先不知道春季有多少文件,所以定义列表更为合适(只需要add添加元素即可)。其是通过计算每一像元的累积和以及该像元的实际有效天数或者次数进行均值的求取,对于像元的有效次数的求取在我的代码中通过mean函数的/nan参数解决,自动跳过无效值(所以需要事先将所有无效值替换为NAN),其余基本一致。春季为3-5月,夏季为6-8月,秋季为9-11月,冬季为12-2月。
2023-09-19 22:56:41
662
原创 Python: 如何批量预处理FY4A L1 DISK和REGC产品?(辐射定标/裁剪/GLT校正/HDF5转TIFF文件等)
这篇博客,其实我想了很久要不要写,因为关于如何去预处理FY4A产品我已经花了很久的时间去手机和整理资料,花费的时间和精力其实不少,我也有想过付费,后来想想算了吧。这方面数据的处理教程本来就少(包括我自己去搜集资料都是困难重重),我自己去处理产品也有受益于其它博客的影响。还有很多想说,暂且憋着吧。另外,由于博客参考了部分其它博客和资料,时间跨度有点长,若有遗漏很抱歉。
2023-07-10 12:37:42
7721
47
原创 Windows:解决电脑开机解锁后黑屏但鼠标可见可移动的问题
本文提供了四种解决Windows系统桌面和任务栏消失问题的方法:1)临时通过任务管理器手动启动explorer.exe恢复桌面;2)检查并修复注册表Winlogon键值中的Shell和Userinit设置;3)运行SFC和DISM命令扫描修复系统文件;4)若以上方法无效则建议重装系统。重点强调了注册表修改和系统文件修复的具体操作步骤,并提醒部分操作需要管理员权限。
2025-10-28 18:17:27
903
原创 GEE&Python-demo2:基于Sentinel-2影像的北京市监督分类与土地覆盖制图(附Python版)
简要流程:: 提供版本和版本,但注意,无论是JS还是Python版本除了JS提供了GEE的Script 链接,直接给定的代码都是无法直接运行的,因为存在自定义创建的训练样本(需要自己手动在GEE的MAP上创建).同时geemap有创建训练样本的工具但是可能存在异常无法正常创建所有的训练样本或者零星地创建单一类样本(具体见: )使用的数据集为: (SR表示表面反射率即地表反射率, TOA版本为大气层顶反射率<包含大气层的影响>).主要使用到的相关波段信息如下:其中,比例系数0.0001与像元DN值相乘即可得到
2025-09-01 20:25:36
642
原创 Python:如何批量下载CLMS NDVI V3数据集?
本文介绍了使用Copernicus Land Monitoring Service (CLMS) API和Python库terracatalogueclient下载全球1km分辨率NDVI数据集的方法。数据集为"Normalised Difference Vegetation Index 1999-2020 (raster 1 km), global, 10-daily – version 3",覆盖2000-2020年时间范围。代码展示了如何配置环境、检索数据集并批量下载,无需API认
2025-08-31 22:14:51
783
2
原创 GEE&Python-demo1:利用Sentinel-2监测北京奥林匹克森林公园2024年NDVI变化(附Python版)
本文介绍了利用Sentinel-2卫星数据监测北京奥林匹克森林公园2024年NDVI(归一化植被指数)变化的方法。研究流程包括:获取2024年Sentinel-2地表反射率数据,计算NDVI,分析时间序列变化,并可视化结果。通过云过滤(<20%覆盖率)处理数据,使用B8(近红外)和B4(红)波段计算NDVI,提取公园区域NDVI中位数,绘制时间序列曲线图。同时展示了公园真彩色影像和NDVI空间分布图(中位数合成)。代码提供了JavaScript和Python两个版本实现,均采用GEE平台处理。研究结果
2025-08-16 22:00:56
456
原创 Python:如何在Pycharm中显示geemap地图?
本文介绍了在PyCharm中配置代理并显示geemap地图的方法。首先需要确保网络代理设置正确,将代理IP和端口输入PyCharm的HTTP代理设置中(路径:设置→系统设置→HTTP代理)。配置完成后需重启PyCharm。接着创建.ipynb文件,通过导入geemap和ee库,使用Map()函数创建地图视图。若显示异常,可尝试更换绘图后端为geemap.foliumap。文末提供了成功运行的环境配置参考版本(Python 3.11.13+geemap 0.36.1等),并强调需保持网络连接GEE服务器。
2025-08-16 11:38:07
617
原创 Python:如何处理WRF投影(LCC, 兰伯特投影)?
本文针对多源栅格数据统一投影转换问题,提出解决方案。主要处理WRF输出的非规则网格NC文件(T2变量)、GLASS-LAI、MODIS土地覆盖等全球规则网格数据,以及WGS84坐标系的GeoTIFF文件,统一转换为LCC(兰伯特等角)投影.
2025-08-14 16:41:20
896
原创 Python:如何从地球大数据科学服务中心批量下载VPM-GPP?
本文介绍了从中国科学院地球大数据科学数据中心批量下载2000-2016年全球0.05°VPM-GPP数据集的方法。主要内容包括:1) 数据获取网址和API使用说明;2) Python代码实现流程,涵盖通过ID获取文件列表和单文件下载两个关键API的调用方法;3) 代码功能介绍,重点说明get_files_info函数如何提取文件名与ID映射关系,以及download_file函数的下载实现逻辑。代码支持断点续传和友好访问控制,适用于批量下载大容量科学数据集。
2025-07-31 18:42:27
839
原创 文献精读:青藏高原东北部青海湖流域沿海拔分布的蒸散量及其主要影响因素
文献阅读的是Ma-2019的《Evapotranspiration and its dominant controls along an elevation gradient in the Qinghai Lake watershed, northeast Qinghai-Tibet Plateau》,(IF 6.3SCI Q1。
2025-07-19 22:10:22
852
原创 文献阅读:全球农田的植被总初级生产力(GPP)、蒸散发(ET)和水分利用率(WUE)的变化研究
该研究分析了全球农田的总初级生产力(GPP)、蒸散发(ET)和水分利用效率(WUE)。结果表明,雨养农田的GPP(1635 gC m^-2)和WUE(1.92 gC kg^-1 H2O)均高于灌溉农田(765 gC m^-2和1.52 gC kg^-1 H2O)。ET时空分布与GPP相似。值得注意的是,灌溉农田WUE呈上升趋势而雨养农田下降,但灌溉区储水量减少表明其WUE提升可能源于地下水过度开采而非真正效率提高。研究为理解农田水分利用特征提供了重要参考。
2025-07-19 21:24:21
495
原创 GEE:批量处理和下载指定时间段的MODIS-GPP产品(MOD17A3HGF)
本文介绍了使用Google Earth Engine (GEE) 处理MODIS GPP数据的两种方法。第一种方法计算指定时间范围内所有GPP影像的平均值,包括数据筛选、有效值处理、缩放因子应用和陆地掩膜等步骤,最终输出WGS84坐标系、0.05°分辨率的全球GPP均值图。第二种方法按年尺度批量处理,逐年计算GPP影像均值(一年一景),同样包含数据预处理和质量控制流程。文中特别解释了关键函数evaluate()的异步工作机制及其在批量处理中的应用,并通过代码示例展示了三种不同数据处理方式的差异。
2025-07-19 21:23:29
1178
原创 GEE:批量处理和下载SoilGrids 250m v2.0
本文介绍了如何在Google Earth Engine (GEE)中处理并导出SoilGrids土壤有机碳(soc)和全氮(nitrogen)数据。主要内容包括: 从GEE获取最新ISRIC维护的SoilGrids数据集 处理0-30cm深度范围内的三个土层数据 应用比例因子转换单位(soc:10x→dg/kg; nitrogen:100x→cg/kg) 设置无效值处理(-9999)和掩膜 以0.05°分辨率导出WGS84坐标系下的全球数据 通过指定crsTransform参数实现地理坐标系输出
2025-07-19 21:22:54
1233
4
原创 文献精读:气候变化、CO2浓度提高和土地利用变化对全球陆地蒸散发的影响分析
摘要:Liu(2021)研究了1980-2017年全球陆地蒸散发(ET)对气候变化、CO2浓度升高和土地利用变化的响应。研究发现:1)全球ET以0.82mm/年的速率增长,41.6%陆地面积呈显著增加趋势;2)气候变化(CLI)是主导因子,贡献0.55mm/年的增长,其中降水(P)主导干旱区ET变化,潜在蒸散发(PET)主导湿润区;3)CO2浓度上升通过气孔效应使多数地区ET减少,但热带雨林区因CO2施肥效应ET增加;4)土地利用变化(LUC)在局部影响显著,毁林减少ET而植树造林增加ET,但全球尺度影响小
2025-07-16 16:40:02
808
原创 Python:风坡夹角/风效因子的计算
本文摘要: 风坡夹角定义为风向与坡向夹角的余弦值乘以坡度正弦值。计算需要使用ERA5-Land的u10(东西向风速分量)和v10(南北向风速分量)数据,以及DEM计算的坡向和坡度数据。风向计算需注意气象定义与数据定义的差异,需对u10和v10取负后计算0-360°角度。风坡夹角通过cos(风向坡向夹角)*sin(坡度)公式计算,具体实现包括:1)处理风向定义差异;2)计算风向坡向最小夹角;3)最终乘积运算。文章提供了Python代码示例和关键参数说明,强调正负号处理对计算结果的重要性。
2025-07-12 18:01:44
987
原创 EndNote:如何对论文中指定的个别引用设置其他样式
本文介绍了在EndNote X9中修改选中的个别引用的样式的方法,需将样式改为"author et al.(year)"。操作步骤包括:1)选中引用;2)通过"Edit & Manage Citation(s)"窗口修改"Formatting";3)支持批量修改同一表格内的其他引用。该方法仅改变表格引用样式,不影响正文引用格式。
2025-07-07 09:42:53
341
原创 matlab:如何将ERA5(.nc)批量输出为Geotiff文件?
批量处理Netcdf4/.nc格式的ERA5文件(全球区域),将其输出为Geotiff文件(WGS84坐标系),此外包括相关函数的详细说明
2025-04-20 00:53:36
1012
原创 IDM&Python:如何利用Python调用IDM进行批量下载
很显然,问题在于IDM已经可以导入txt文件进行批量下载,为什么还需要呢?第一:IDM对于大批量的下载链接(实际体验大于5000个链接就已经非常卡顿无法移动鼠标和操作IDM)的txt文件是全部导入,即使对于高性能的笔记本也没法抗住;第二:IDM并没有很好的解决对于文件中断的监测,尤其是大批量 ,而使用自定义的类可以从中断处继续调用IDM下载;
2025-04-19 01:28:48
1212
原创 GEE:输入中文注释夹杂拼音和中文(异常乱码)问题
浏览器,中文注释可以正常输入,可能是中文编码输入的问题,目前暂时无法解决chrome和edge的中文输入问题。切换小狼毫输入法,问题依旧存在,应该不是输入法的问题;Edge和Chrome使用的内核都是一样的,尝试切换火狐Fire Fox
2025-03-15 15:30:29
264
原创 zotero:如何快捷使用硅基流动(siliconflow)的deepseek?
3步部署智能文献库:①官网下载Zotero7→②插件市场一键安装Awesome GPT→③绑定硅基流动API密钥(免费获取)。💡AI秒级生成摘要/翻译/重点解析,文献处理效率提升200%!支持Windows/Mac,5分钟搭建科研智能工作流,论文党必备黑科技>>#科研神器 #文献革命 #AI加速器
2025-02-27 14:23:26
2650
原创 GDAL:Warning 1: All options related to creation ignored in update mode
警告代码在gdal.Warp函数中产生。警告:,很明显,正如它所说,所有和创建相关的options将会在更新模式下忽略。这里的options根据gdal。
2024-05-09 21:58:30
1202
原创 简记:机器学习中关于训练集和测试集的标准化问题
错误处理:在未进行数据集划分之前,对所有特征项(X/因子项)进行标准化例如MinMaxScaler\Normalizer等方法,然后再进行数据集划分;或者在数据集划分之后分别对训练集和测试集进行独立的标准化。
2024-04-29 16:39:30
1579
原创 Python:如何使用GDAL实现多波段遥感影像的批量拼接?
设置拼接好的遥感影像的缺失值(这里就还是照旧0.0吧,如果说你觉得0.0可能是有意义的,那么你可以设为例如-9999等)本打算自己写一个拼接函数,但是感觉太折腾了,查了一下gdal的实现方法,发现有封装的非常好的一个方法(:原始数据集(待拼接影像)的缺失值数值。(例如你的遥感影像中0.0为缺失值,那么就传入0.0):列表形式,传入所有需要进行拼接的tiff文件的路径;例如此处需要拼接的tiff文件有两个。一行代码就可以解决,需要注意的。)可以解决,直接就拿来用了。:拼接好的影像的输出路径。
2024-03-17 10:52:47
1346
原创 Python:如何统计特定返回周期下的GEV分布值和实际观测值的超越概率?
例如,某个站点的在某天发生了降水事件,日降水值是300mm,那么我们通过GEV分布得知它的非超越概率是95%,那么超越概率就是5%,也就是说,这次降水事件发生的概率是5%,换言之,在所有降水事件,几乎有95%的降水事件的强度都小于此次降水的强度。累积分布函数基于得到的GEV分布特征,对传入的单列数据的每一值进行计算,给出对于当前数据值的非超越概率(*100 百分化),再用1减去意为超越概率,也就是说,当前值发生的概率有多大。在对单列数据进行GEV分布拟合,得到该分布的分布特征,然后使用。
2024-03-15 17:39:59
1684
1
原创 SNAP:如何批量预处理Sentinel2 L2A数据集并输出为TIFF文件?
我目前就是希望下载哨兵2号数据,然后在SNAP中进行批量提取真彩色波段并输出为TIFF文件。
2024-03-03 22:59:26
3394
4
原创 IDL:如何对地表温度数据进行分组统计并生成温度分布直方图?
获取一张地表温度数据,对其进行分组统计,并制作间隔为3K的温度分布频数和频率直方图。
2024-02-28 23:53:35
949
原创 Wget: 如何批量下载风云卫星和NASA数据?
首先进入风云卫星服务官网: https://satellite.nsmc.org.cn/portalsite/default.aspx假定我们下载火点数据,如下先找到下载界面:接着依据数据所对应卫星\传感器\产品名称进行检索:选定需要的数据加入到购物车中:接着提交订单等待所有数据回调完成就可以下载:找到下载连接并另存为txt文件:下面为txt文件的链接:意为唤醒wget程序起来工作了;-i意为对文本文件中的各个下载链接进行迭代逐个下载;-P。
2024-02-26 23:27:36
2818
1
原创 论文解析:NDVI Forecasting Model Based on the Combination of Time Series Decomposition and CNN – LSTM
论文地址:https://link.springer.com/10.1007/s11269-022-03419-3这篇论文是想要基于时间序列分解和CNN-LSTM两种方法的混合进行NDVI的预测,需要注意的是此处的CNN和LSTM你可以拆分看,他们并不是一个完整的概念,只是二者的简单叠加即CNN的输出作为LSTM的输入。我就不讲这些算法到底好亦或者差,仅仅从实现原理上进行解析。仅个人解读。
2023-12-30 22:41:18
1756
原创 Python:(Sentinel-1)如何解析SNAP输出的HDF5文件并输出为GeoTIFF?
最近在了解sentinel-1的预处理过程,但是由于影响太大了,常规的GeoTIFF无法输出预处理结果,BigTIFF输出时似乎也遇到了一些问题(好在后面解决了,所以正好做一下HDF5文件输出的TIFF文件与BigTIFF文件的对比),对于输出的HDF5文件则完全没有问题。但是问题在于HDF5文件的结构尚不了解,因此对于其中的地理信息如何提取很关键(当然你可以使用ArcGIS或者ENVI打开其中的VV和VH波段,但是都无法自动读取到其中的地理信息或者坐标系信息)。
2023-12-18 23:01:17
1928
2
原创 Python:如何解决MODIS GRID(正弦投影/GCTP_SNSOID)的重投影问题?
GIS茄子;若博客出现纰漏或有更多问题交流欢迎关注GIS茄子,或者邮箱联系(推荐-见主页).
2023-12-15 12:26:42
3321
10
(永不付费)ArcGIS实操数据
2022-12-17
专题地图制作相关文件_rar
2022-05-22
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅