网络营销数据解读(六)——自顶向下,逐步求精

转载声明 :转载时请以超链接形式标明文章原始出处:
http://www.marsopinion.com/2009/12/21/how-to-interprest-online-marketing-data-in-depth/

3 2009.12.08.1030.17

建议先 阅读本系列其他文章:

(这篇文章比较基础,老鸟可以跳过了)

上次说到我们需要找到一组Metrics(指标)来衡量目标达成情况 。为了达到这个目的,我们需要做的三件事情是:

  • 了解我们监控到的数字的意义 ,找到合适的指标来衡量我们目的达成的效果。
  • 研究数据,将无效和虚假的部分剥离。
  • 通过测试、辅助指标计算和长期监控来分析隐性和长期效果。

好吧,回归我一向的风格,继续问问题:

  • 假设网站(或者某个营销活动)的某个指标发生变化(例如在显著下降),我们该怎么找到数据变化的原因和应对方法?
  • 假设我们已经设置好了一套完美的指标 , 通过监控得知campaign A在所有指标上都等同于campaign B,我们是不是就没法分析哪个campaign比较好?如果两个campaign不是完全相等,而是在某一个指标上相等(比如两个广告的 conversion rate一模一样),我们是否就没法分析说我们接下来要怎样优化这个指标(比如conversion rate)? 如果做A/B测试的时候发现两种结帐流程的转化率一样,我们是不是就可以随便挑一个?

本想用常用术语的,百度了一下发现官方定义和我理解不一样,为免出丑还是用通俗概念来解释,不丢术语了:)。基本上,不管学术上解决问题的方法叫什 么名字,具体的思路都很类似:如果一个大问题想不清楚,就把它拆成更好理解的小问题。借用一个程序设计领域的概念就是:自顶向下,逐步求精。

(预先警告一下:下面写的思考方法和技巧都非常基础,很可能 你早就已经知道或者很熟练了)

可以采用的工具有:

1. 看分布:

基本上,凡是“总和”或者“平均”类的统计数据都会丢失掉很多重要的信息。

例如你打靶,第一枪向左偏了5米,第二枪向右偏了5米,第三枪向上偏了5米,第四抢向下偏了5米——平均来说,你射击的误差是零(因为都相互抵消了),成绩和枪枪命中靶心的世界冠军一样——这显然是荒谬的结论。

网络营销当中也常常会发生类似的事情:

  • 上个月平均订单金额500元/单,这个月也是500元/单,看起来平平安安不需要操心。可是实际上有可能上个月5万单都是400~600元,而这 个月5万单则是2万单300元,2万单400元,5千单500元,5000单超过2500元——客户购买习惯已经发生了巨大变化,一方面客户订单在变小 (可能是因为产品单价下降,采购数量减少,或者客户选择了比较便宜的替代品),另一方面出现了一些相对较大的订单(可能是中小企业采购,或者是网站扩充产 品线见效了)。——光看平均值的话很容易就忽视这些潜在的变化,不能及时的做出应对。
  • 两个campaign带来一样多的流量(100万流量),而且流量的Average Time on Site(假设是40秒)是一样的,看起来两边差不多。可是两边的实际流量情况可能是千差万别:campaign A带来的50万流量停留0秒(具体原因参看之前写的网络营销数据解读(二)——事情不是你看到的那样 ),50 万停留80秒;而campaign B带来的流量20万停留0秒,60万停留10秒,20万停留170秒。首先这个数据可以帮助我们去判别流量是否异常是否可能有作*流量,其次它告诉我们说 第一个页面bounce rate比较高,第二个比较低,可能是第二个页面的设计较好,然后它告诉我们说第二个页面虽然更能吸引人点击,但是那些人都是很快点击页面然后很快就离开 了,这一点很值得和campaign A进行对比再深入研究。

解决的方法还蛮简单的,就是不要只看平均数和总数,而要多看看分区段的数据。

比如看Avg Time on Site,我们可以看个平均值,就好象:

image

也可以去查看分区段的数据,获得更深刻的理解,就好象:

image

从第一个数据里我们其实很难分析出原因,更别说想出行动方案。但是第二幅图就更加直接的告诉我们说Avg Time on Site短是因为很多人停留了不到10秒就走了——bounce rate过高。再去看那些bounce rate高的流量来源,发现主要是两个:1. 朋友的大网站上的友情链接,每天都带来海量流量,但是往往点开网页就走——因为我们的网站和朋友网站内容其实不太相关,用户也并不重合;2. 因为网站的名字比较特别,和某电视剧重名,所以很多搜索电视剧的用户来了网站——一看网站并不是讨论电视剧的就走了。然后我们可以根据这两个分析来得出一 些结论和行动方法,例如之后问别人要友情链接主要要看用户的重合度,而不是流量。或者说要找出网站上所有可以和该电视剧匹配的产品做个特别的 landing page,把那部分敲错门的用户留下来——抛砖引玉,关键是我们要看到“平均数”后面的东西,这样才能有深入的洞察,也才能够有合理的行动方案。

2. 拆因子,拆构成

除了分隔区段来查看数据详情之外,比较常见的方法还有拆因子和拆构成。

同样看看例子:

网站转化率下降,我们要找原因。因为”转化率“=”订单“/”流量“,所以”转化率“下降的原因很可能是”订单量下降“,”流量上升“,或者两者皆 是。按照这个思路我们可能发现说主要的原因是”流量上升“而”订单量升幅不明显“,那么下面我们就可以来拆解”流量“的构成,例如拆成”直接访问流量“、 ”广告访问流量“和”搜索引擎访问流量“再看具体是哪部分的流量发生了变化,接下来再找原因。这时我们可能可以看到说是搜索引擎访问流量上升,那就可以再 进一步分析说是付费关键词部分上升,还是自然搜索流量上升,如果是自然流量,是品牌(或者网站名相关)关键词流量上升,还是其他词带来的流量上升——假如 最后发现说是非品牌类关键词带来的流量上升,那么就再找原因——市场变化(淡季旺季之类),竞争对手行动,还是自身改变。假如刚好在最近把产品页面改版 过,就可以查一下是不是因为改版让搜索引擎收录变多权重变高。接下来一方面要分析说自己到底哪里做对了帮助网站SEO了(比如把页面导航栏从图片换成了文 字),把经验记下来为以后改版提供参考;另一方面要分析说哪里没做好(因为新增流量但是并没有相应增加太多销售),去研究怎样让“产品页面”更具吸引力 ——因为对很多搜索引擎流量来说,他们对网站的第一印象是产品页面,而不是首页。

image

3. 拆步骤

一般来说,这一步会画个漏斗图(前面几个步骤也都会画些漂亮图来展示以示专业)

举两个例子:

第一个例子:两个campaign,带来一样多的流量,一样多的销售,是不是说明两个campaign效率差不多,我们没什么好总结好学习的?

可是,如果我们把每个campaign的流量拆细,去看每一步,就会发现不一样的地方。Campaign B虽然和Campaign A带来了等量的流量,可是这部分流量对产品更感兴趣,看完landing page之后更多的人去看了产品页面。可惜的是虽然看产品的人很多,最后转化率不高,订单数和campaign A一样。

image image

这里面还可以再深入分析(结合之前提到的分析方法,和下一章要说的细分方法),但是光凭直觉,也可以简单的得出一些猜测来,例如两个 campaign的顾客习惯不太一样,campaign B的landing page设计更好,campaign B的顾客更符合我们的目标客户描述、更懂产品——但是我们的价格没有优势……这些猜想是我们深入进行分析,得出行动方案的起点。至少,它可以帮助我们更快 的累计经验,下次设计campaign的时候会更有的放矢,而不是仅仅写一个简单report说这两个campaign效果一样就结案了。(注:这是个简 化的例子,实际上还可以分更多层)

第二个例子可能更常见一些,比如网站转化率下降,我们可以拆成这样的漏斗:

image

这样拆好之后,更能清楚地看到到底是哪一步的转化率发生了变化。有可能是访客质量下降,都bounce掉了,也可能是“购物车–>登录”流失了(如果你把运费放到购物车中计算,很可能就看到这一步流失率飙升),这样拆细之后更方便我们分析。

见过一个例子就是转化率下降,MKT查流量质量发现没问题,PM查价格竞争力也没问题——最后发现是MIS为了防止恶意注册,在登录页面加了验证码(而且那个验证码极度复杂),把“登录页面–>填写订单信息“这一步的转化给降低了。

这篇文章比较基础……说到这里前面提的两个问题应该很好答了。

老规矩,最后问个问题:如果我们有了用于衡量网络营销效果的完善的指标 ,从这套指标看,campaign(或者页面改版,或者其他任何东西)A在各项指标上都和campaign B相当,而且我们把指标分区段、拆细,分步骤看漏斗图都看不出什么东西,我们应该怎么做?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值