推荐系统
文章平均质量分 86
Every DAV inci
这个作者很懒,什么都没留下…
展开
-
深度学习用于推荐系统
深度学习其实就是神经网络模型,一般来说,隐含层数量大于等于2层就认为是深度学习(神经网络)模型。神经网络不是什么新鲜概念,在好几十年前就被提出来了,最早可追溯到1943年McCulloch与Pitts合作的一篇论文(参考文献1),神经网络是模拟人的大脑中神经元与突触之间进行信息处理与交互的过程而提出的。...原创 2022-08-14 22:13:41 · 3045 阅读 · 0 评论 -
推荐系统中协同过滤的理解
在海量的用户中找与自己品味类似的人,发现他们的喜好,从而为自己提供选择协同过滤是利用的一个典型方法。协同过滤是推荐的,即集体智慧和推荐是关联的要理解什么是大部分的人会问问周围的朋友,看看最近有什么,而一般更倾向于从朋友那里。这就是协同过滤的。:协同过滤一般是在海量的用户中和你,在协同过滤中,这些用户,然后给你。,借助的同时也。: 把的商品降低到,解决问题。结合两种思想就是,使用。可以有,还可以有等等,是,最后的物品。:就是的阶段:马太效应就是,使得那些。(好的更好,坏的更坏):人们只项目,而项目。原创 2022-08-15 15:38:26 · 481 阅读 · 0 评论 -
推荐系统中的i2i,u2u2i,u2i2i和u2tag2i
推荐系统的主要目标是将大量的标的物推荐给可能喜欢的海量用户%2C 这里涉及到,标的物 和 用户 两类对象。任何互联网推荐产品, 标的物和用户都是不断增长变化的,所以一定会频繁面对新标的物和新用户, 推荐系统冷启动问题指的就是。永远不会推荐和用户曾经喜欢的物品不相干的物品,完全没有利用其它用户的喜好来提高对此用的推荐质量。推荐系统的主要目标是将大量的标的物推荐给可能喜欢的海量用户, 这里涉及到。另外,如果是新开发的产品,初期用户很少,基于内容的推荐一般是推荐系统的。(1) 为某一用户做推荐的时候。...原创 2022-08-15 15:37:14 · 1027 阅读 · 0 评论 -
强化学习和推荐系统的结合应用
此外,推荐系统往往利用日志文件进行学习,日志文件纪录的可能是其它版本的用户行为,这个过程对应强化学习中off-policy的设定。本文的创新点之一是考虑到了推荐时商品之间的2D位置关系,Actor输出的action中同时包括了每个商品的2D位置信息。可解释性的推荐系统指的是系统在生成推荐列表的同时,针对每一个推荐商品,生成推荐的理由。具体而言,可解释性的实现是通过先建立用户和商品之间的知识图谱,再将推荐行为建模成路径搜索问题,路径经过的节点即是推荐逻辑链的组成部分。2、通过与用户的自然交互,推荐系统。...原创 2022-08-15 15:35:47 · 1644 阅读 · 0 评论