Weaviate混合搜索:结合向量和关键词的高效检索方案
1. 引言
在现代信息检索系统中,如何快速、准确地找到相关信息是一个持续的挑战。传统的关键词搜索虽然简单直接,但往往难以捕捉语义和上下文信息。而近年来兴起的向量搜索虽然在语义理解上有优势,但可能会忽略一些重要的关键词匹配。Weaviate的混合搜索(Hybrid Search)技术巧妙地结合了这两种方法的优点,为我们提供了一种更加全面和高效的检索解决方案。
本文将详细介绍如何使用Weaviate的混合搜索功能,并通过LangChain框架来实现一个强大的检索器(Retriever)。我们将探讨其工作原理、实现方法、以及在实际应用中的优势。
2. Weaviate混合搜索原理
Weaviate是一个开源的向量数据库,它的混合搜索功能结合了稀疏向量(sparse vectors)和密集向量(dense vectors)来表示搜索查询和文档的含义与上下文。
- 稀疏向量:主要用于表示关键词信息,类似于传统的TF-IDF(词频-逆文档频率)方法。
- 密集向量:捕捉语义信息,通常使用预训练的语言模型(如BERT、GPT等)生成。
通过同时利用这两种向量表示,Weaviate能够在保留关键词匹配优势的同时,也考虑到语义相似性,从而提供更加全面和准确的搜索结果。
3. 使用LangChain实现Weaviate混合搜索
下面,我们将逐步演示如何使用LangChain框架来实现一个基于Weaviate混合搜索的检索器。
3.1 环境准备
首先,确保已经安装了必要的库:
pip install --upgrade weaviate-client langchain
3.2 初始化Weaviate客户端
import os
import weaviate
WEAVIATE_URL = os.getenv("WEAVIATE_URL")
WEAVIATE_API_KEY = os.getenv("WEAVIATE_API_KEY")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
# 初始化Weaviate客户端
client = weaviate.Client(
url=WEAVIATE_URL,
auth_client_secret=weaviate.AuthApiKey(api_key=WEAVIATE_API_KEY