Databricks Vector Search:实现高效的相似性搜索
随着数据规模的不断扩大,如何快速有效地进行相似性搜索成为了许多企业面临的挑战。Databricks Vector Search作为一种无服务器的相似性搜索引擎,为用户提供了一种高效的解决方案。本文将带您深入了解Databricks Vector Search的使用,并通过示例演示如何使用SelfQueryRetriever进行自我查询检索。
创建Databricks向量存储索引
在开始使用Databricks Vector Search之前,我们需要首先创建一个向量存储索引,并用一些数据进行初始化。我们将使用包含电影摘要的小型演示数据集。
# 安装必要的库
%pip install --upgrade --quiet langchain-core databricks-vectorsearch langchain-openai tiktoken
请注意,您可能需要重启内核以使用更新的包。
获取OpenAI和Databricks凭证
我们将使用OpenAIEmbeddings,因此需要获取OpenAI API密钥。
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
databricks_host = getpass.getpass("Databricks host:")
databricks_token = getpass.getpass("Databricks token:")
创建向量存储索引
from databricks.vector_search.client import VectorSearchClient
from langchain_openai