【深入探索Databricks Vector Search:实现高效的相似性搜索】

Databricks Vector Search:实现高效的相似性搜索

随着数据规模的不断扩大,如何快速有效地进行相似性搜索成为了许多企业面临的挑战。Databricks Vector Search作为一种无服务器的相似性搜索引擎,为用户提供了一种高效的解决方案。本文将带您深入了解Databricks Vector Search的使用,并通过示例演示如何使用SelfQueryRetriever进行自我查询检索。

创建Databricks向量存储索引

在开始使用Databricks Vector Search之前,我们需要首先创建一个向量存储索引,并用一些数据进行初始化。我们将使用包含电影摘要的小型演示数据集。

# 安装必要的库
%pip install --upgrade --quiet langchain-core databricks-vectorsearch langchain-openai tiktoken

请注意,您可能需要重启内核以使用更新的包。

获取OpenAI和Databricks凭证

我们将使用OpenAIEmbeddings,因此需要获取OpenAI API密钥。

import getpass
import os

os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
databricks_host = getpass.getpass("Databricks host:")
databricks_token = getpass.getpass("Databricks token:")

创建向量存储索引

from databricks.vector_search.client import VectorSearchClient
from langchain_openai 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值