数据结构之----------单调队列

31 篇文章 2 订阅
本文介绍了如何利用单调队列解决滑动窗口最大值的问题,提供了两种实现方式:一种根据下标维护单调队列,另一种根据元素值维护。通过这两种方法,可以在O(n)的时间复杂度内找到数组中每个滑动窗口的最大值。示例展示了算法在不同输入情况下的应用。
摘要由CSDN通过智能技术生成

单调队列

单调队列的作用就是维持某一个区间的最值

其中有两个版本

  • 根据下标来进行维护单调队列
  • 根据值来维护单调队列
239. 滑动窗口最大值

难度困难1036

给你一个整数数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。

返回滑动窗口中的最大值。

示例 1:

输入:nums = [1,3,-1,-3,5,3,6,7], k = 3
输出:[3,3,5,5,6,7]
解释:
滑动窗口的位置                最大值
---------------               -----
[1  3  -1] -3  5  3  6  7       3
 1 [3  -1  -3] 5  3  6  7       3
 1  3 [-1  -3  5] 3  6  7       5
 1  3  -1 [-3  5  3] 6  7       5
 1  3  -1  -3 [5  3  6] 7       6
 1  3  -1  -3  5 [3  6  7]      7

示例 2:

输入:nums = [1], k = 1
输出:[1]

示例 3:

输入:nums = [1,-1], k = 1
输出:[1,-1]

示例 4:

输入:nums = [9,11], k = 2
输出:[11]

示例 5:

输入:nums = [4,-2], k = 2
输出:[4]

根据下标维护单调队列

关键在于,队列里面一直维持着窗口范围内递增或递减的下标,并且,根据队列头的下标来判断是否队列头部元素已经不在窗口内

class Solution {
public:
    vector<int> maxSlidingWindow(vector<int>& nums, int k) {
        vector<int> res;
        deque<int> de;
        // 用单调队列
        for(int i=0;i<k;i++) {
            while(!de.empty() && nums[de.back()]<nums[i]) {
                de.pop_back();
            }
            de.push_back(i);
        }

        res.push_back(nums[de.front()]);

        for(int i=k;i<nums.size();i++) {
            while(!de.empty() && de.front()<i-k+1) {
                de.pop_front();
            }
             while(!de.empty() && nums[de.back()]<nums[i]) {
                de.pop_back();
            }
            de.push_back(i);
            res.push_back(nums[de.front()]);



        }

        return res;

    }
};

根据元素维持单调队列

关键在于,当移除的元素等于队列头个元素的时候,那么就知道队列头个元素将要离开窗口范围,此时队列里面加入新进元素后的第二个元素就是窗口的最大值

class Solution {
public:
    vector<int> maxSlidingWindow(vector<int>& nums, int k) {
        // 单调队列,用元素来维持
        if(nums.size()<=k) {
            return {*max_element(nums.begin(),nums.end())};
        }
        if(k==1) {
            return nums;
        }

        deque<int> de;
        for(int i=0;i<k;i++) {
            while(!de.empty() && de.back()<nums[i] ) {
                de.pop_back();
            }
            de.push_back(nums[i]);
        }


        // 存储结果
        vector<int> res;

        res.push_back(de.front());

        for(int i=k;i<nums.size();i++) {
            if(nums[i-k]==de.front()) {
                de.pop_front();
            }

            while(!de.empty() && de.back()<nums[i]) {
                de.pop_back();
            }
            de.push_back(nums[i]);

            res.push_back(de.front());
        }

        return res;

    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值