单调队列
单调队列的作用就是维持某一个区间的最值
其中有两个版本
- 根据下标来进行维护单调队列
- 根据值来维护单调队列
239. 滑动窗口最大值
难度困难1036
给你一个整数数组 nums
,有一个大小为 k
的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k
个数字。滑动窗口每次只向右移动一位。
返回滑动窗口中的最大值。
示例 1:
输入:nums = [1,3,-1,-3,5,3,6,7], k = 3
输出:[3,3,5,5,6,7]
解释:
滑动窗口的位置 最大值
--------------- -----
[1 3 -1] -3 5 3 6 7 3
1 [3 -1 -3] 5 3 6 7 3
1 3 [-1 -3 5] 3 6 7 5
1 3 -1 [-3 5 3] 6 7 5
1 3 -1 -3 [5 3 6] 7 6
1 3 -1 -3 5 [3 6 7] 7
示例 2:
输入:nums = [1], k = 1
输出:[1]
示例 3:
输入:nums = [1,-1], k = 1
输出:[1,-1]
示例 4:
输入:nums = [9,11], k = 2
输出:[11]
示例 5:
输入:nums = [4,-2], k = 2
输出:[4]
根据下标维护单调队列
关键在于,队列里面一直维持着窗口范围内递增或递减的下标,并且,根据队列头的下标来判断是否队列头部元素已经不在窗口内
class Solution {
public:
vector<int> maxSlidingWindow(vector<int>& nums, int k) {
vector<int> res;
deque<int> de;
// 用单调队列
for(int i=0;i<k;i++) {
while(!de.empty() && nums[de.back()]<nums[i]) {
de.pop_back();
}
de.push_back(i);
}
res.push_back(nums[de.front()]);
for(int i=k;i<nums.size();i++) {
while(!de.empty() && de.front()<i-k+1) {
de.pop_front();
}
while(!de.empty() && nums[de.back()]<nums[i]) {
de.pop_back();
}
de.push_back(i);
res.push_back(nums[de.front()]);
}
return res;
}
};
根据元素维持单调队列
关键在于,当移除的元素等于队列头个元素的时候,那么就知道队列头个元素将要离开窗口范围,此时队列里面加入新进元素后的第二个元素就是窗口的最大值
class Solution {
public:
vector<int> maxSlidingWindow(vector<int>& nums, int k) {
// 单调队列,用元素来维持
if(nums.size()<=k) {
return {*max_element(nums.begin(),nums.end())};
}
if(k==1) {
return nums;
}
deque<int> de;
for(int i=0;i<k;i++) {
while(!de.empty() && de.back()<nums[i] ) {
de.pop_back();
}
de.push_back(nums[i]);
}
// 存储结果
vector<int> res;
res.push_back(de.front());
for(int i=k;i<nums.size();i++) {
if(nums[i-k]==de.front()) {
de.pop_front();
}
while(!de.empty() && de.back()<nums[i]) {
de.pop_back();
}
de.push_back(nums[i]);
res.push_back(de.front());
}
return res;
}
};